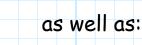

<u>Large-Signal Operation of</u> <u>BJT Differential Pair</u>

Therefore, the **emitter currents** can be written in terms of the **base voltages** as:

$$i_{E1} = \left(\frac{I_s}{\alpha} e^{-v_E/V_T}\right) e^{v_1/V_T} \qquad i_{E2} = \left(\frac{I_s}{\alpha} e^{-v_E/V_T}\right) e^{v_2/V_T} \quad (A)$$

Of course, we know that $I = i_{E1} + i_{E2}$, thus:


$$\mathbf{I} = \left(\frac{\mathbf{I}_{s}}{\alpha} \mathbf{e}^{-\mathbf{v}_{E}}/\mathbf{v}_{T}\right) \left(\mathbf{e}^{\mathbf{v}_{1}}/\mathbf{v}_{T} + \mathbf{e}^{\mathbf{v}_{2}}/\mathbf{v}_{T}\right)$$

And rearranging we find:

$$\frac{I_{s}}{\alpha} e^{-v_{E}/V_{T}} = \frac{I}{\frac{v_{1}/V_{T}}{e^{/V_{T}} + e^{\frac{v_{2}}{V_{T}}}}}$$
(B)

Now, we can insert equation (B) into equation (A) and find:

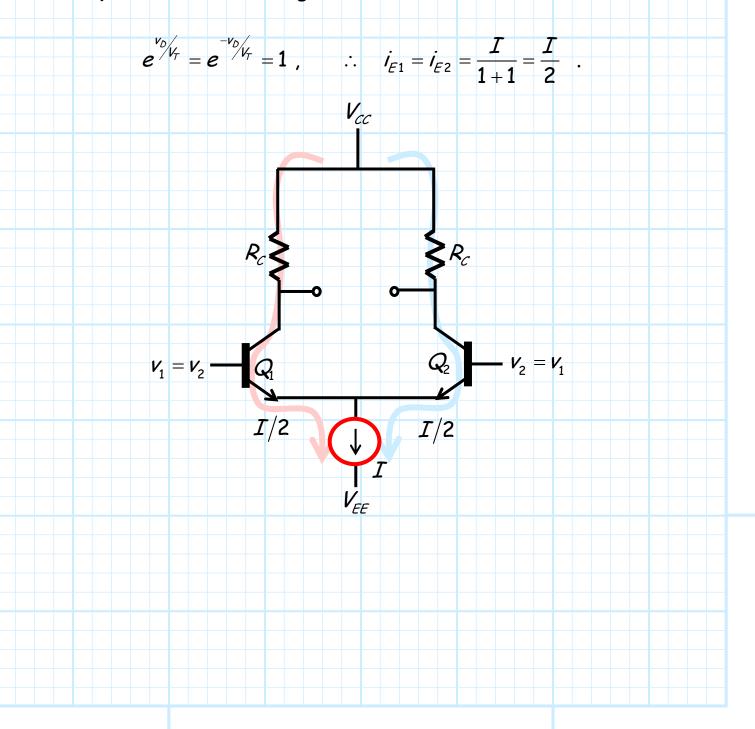
$$i_{E1} = \frac{I e^{\frac{v_1}{V_T}}}{e^{\frac{v_1}{V_T}} + e^{\frac{v_2}{V_T}}} = \frac{I}{1 + e^{\frac{-(v_1 - v_2)}{V_T}}}$$

 $i_{E2} = \frac{I e^{\frac{v_2}{V_T}}}{e^{\frac{v_1}{V_T}} + e^{\frac{v_2}{V_T}}} = \frac{I}{1 + e^{\frac{+(v_1 - v_2)}{V_T}}}$

Now, let's define a differential voltage:

$$v_D = v_1 - v_2$$

We can now (finally) write the emitter currents in terms of this differential voltage v_p only!

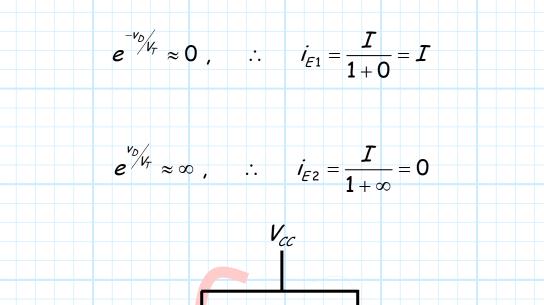

$$i_{E1} = \frac{I}{1 + e^{-v_D/v_T}}$$
$$i_{E2} = \frac{I}{1 + e^{+v_D/v_T}}$$

In other words, the emitter current in a differential pair is independent of the common-mode voltage $v_{cm} = (v_1 + v_2)/2!$

Now, let's examine this result more closely. We will consider **3 cases**, $v_D = 0$, $v_D \gg V_T$, and $v_D \ll -V_T$.

*v*_D = 0

When $v_1 = v_2$ (i.e., $v_D = 0$), we find that the **emitter currents** are equal, with each taking half of the available current *I*:

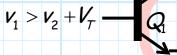


5/7

$V_D \gg V_T$

and

When $v_D \gg V_T$ (i.e., $v_D \gg 25mV$), we find that the emitter current i_{E1} takes all the available current, leaving emitter current i_{E2} with **none**:

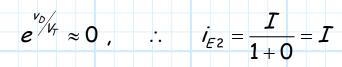


 R_c

0

 V_{EE}

 $- v_2 < v_1 - V_T$

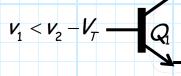


$v_{D} \ll -V_{T}$

When $v_D \ll -V_T$ (i.e., $v_D \ll -25mV$), we find that the emitter current i_{E^2} takes all the available current, leaving emitter current i_{E^1} with **none**:

$$e^{-v_b/v_T} \approx \infty$$
, \therefore $i_{E1} = \frac{I}{1+\infty} = 0$

and



 R_{c}

 Q_2

Т

 $- v_2 > v_1 + V_T$

0

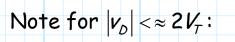
 V_{EE}

Recall that for BJTs in the active mode, the **collector** current is related to the emitter current by $i_c = \alpha i_E$.

1.0

0.8

0.2


ic2/T

5

 $\frac{V_D}{V_T}$

Thus, we can **plot** the collector currents i_{C1} and i_{C2} as a function of differential voltage v_D :

*i*_{C1/}

A:

10

Q: Is this important? What does this mean?

5