A Complex Representation of
 Sinusoidal Functions

Q: So, you say (for example) if a linear two-port circuit is driven by a sinusoidal source with arbitrary frequency ω_{0}, then the output will be identically sinusoidal, only with a different magnitude and relative phase.

How do we determine the unknown magnitude $V_{m 2}$ and phase φ_{2} of this output?

Eigen values are complex

A: Say the input and output are related by the impulse response $g(t)$:

$$
v_{2}(t)=\mathcal{L}\left[v_{1}(t)\right]=\int_{-\infty}^{t} g\left(t-t^{\prime}\right) v_{1}\left(t^{\prime}\right) d t^{\prime}
$$

We now know that if the input were instead:
then:

$$
v_{1}(t)=e^{j \omega_{0} t}
$$

$$
v_{2}(t)=\mathcal{L}\left[e^{j \omega_{0} t}\right]=\boldsymbol{G}\left(\omega_{0}\right) e^{j \omega_{0} t}
$$

where:

$$
G\left(\omega_{0}\right) \doteq \int_{0}^{\infty} g(t) e^{-j \omega_{0} t} d t
$$

Thus, we simply multiply the input $v_{1}(t)=e^{j \omega_{0} t}$ by the complex eigen value $G\left(\omega_{0}\right)$ to determine the complex output $v_{2}(t)$:

$$
v_{2}(t)=G\left(\omega_{0}\right) e^{j \omega_{0} t}
$$

Complex voltages and currents

are your friend!

Q: You professors drive me crazy with all this math involving complex (i.e., real and imaginary) voltage functions. In the lab I can only generate and measure real-valued voltages and real-valued voltage functions. Voltage is a real-valued, physical parameter!

A: You are quite correct.

Voltage is a real-valued parameter, expressing electric potential (in Joules) per unit charge (in Coulombs).

Q: So, all your complex formulations and complex eigen values and complex eigen functions may all be sound mathematical abstractions, but aren't they worthless to us electrical engineers who work in the "real" world (pun intended)?

A: Absolutely not! Complex analysis actually simplifies our analysis of realvalued voltages and currents in linear circuits (but only for linear circuits!).

Remember Euler

The key relationship comes from Euler's Identity:

$$
\begin{gathered}
e^{j \omega t}=\cos \omega t+j \sin \omega t \\
\operatorname{Re}\left\{e^{j \omega t}\right\}=\cos \omega t
\end{gathered}
$$

Meaning:

Now, consider a complex value C. We of course can write this complex number in terms of it real and imaginary parts:

$$
C=a+j b \quad \therefore a=\operatorname{Re}\{C\} \quad \text { and } \quad b=\operatorname{Im}\{C\}
$$

But, we can also write it in terms of its magnitude $|C|$ and phase φ !
where:

$$
C=|C| e^{j \varphi}
$$

$$
|C|=C C^{*}=a^{2}+b^{2} \quad \varphi=\tan ^{-1}[b / a]
$$

A complex number has magnitude and phase

Thus, the complex function $C e^{j o_{0} t}$ is:

$$
\begin{aligned}
C e^{j \omega_{0} t} & =|C| e^{j \varphi} e^{j \omega_{0} t} \\
& =|C| e^{j \omega_{0} t+\varphi} \\
& =|C| \cos \left(\omega_{0} t+\varphi\right)+j|C| \sin \left(\omega_{0} t+\varphi\right)
\end{aligned}
$$

Therefore we find:

$$
|C| \cos \left(\omega_{0} t+\varphi\right)=\operatorname{Re}\left\{C e^{j \omega_{0} t}\right\}
$$

Now, consider again the real-valued voltage function:

$$
V_{1}(t)=V_{m 1} \cos \left(\omega t+\varphi_{1}\right)
$$

This function is of course sinusoidal with a magnitude $V_{m 1}$ and phase φ_{1}.
Using what we have learned above, we can likewise express this real function as:

$$
v_{1}(t)=V_{m 1} \cos \left(\omega t+\varphi_{1}\right)=\operatorname{Re}\left\{V_{1} e^{j \omega t}\right\}
$$

where V_{1} is the complex number:

$$
V_{1}=V_{m 1} e^{j q_{1}}
$$

But what is the output signal?

Q: I see! A real-valued sinusoid has a magnitude and phase, just like complex number.

A single complex number (V) can be used to specify both of the fundamental (real-valued) parameters of our sinusoid (V_{m}, φ).

What I don't see is how this helps us in our circuit analysis.
After all:

$$
v_{2}(t) \neq \boldsymbol{G}\left(\omega_{0}\right) \operatorname{Re}\left\{V_{1} e^{j \omega_{0} t}\right\}
$$

What then is the real-valued output $v_{2}(t)$ of our two-port network when the input $v_{1}(t)$ is the real-valued sinusoid:

$$
\begin{aligned}
v_{1}(t) & =V_{m 1} \cos \left(\omega_{0} t+\varphi_{1}\right) \\
& =\operatorname{Re}\left\{V_{1} e^{j \omega_{o}}\right\}
\end{aligned}
$$

The math will reveal the answer!

A: Let's go back to our original convolution integral:

$$
\begin{aligned}
& \begin{aligned}
v_{2}(t) & =\int_{-\infty}^{t} g\left(t-t^{\prime}\right) v_{1}\left(t^{\prime}\right) d t^{\prime} \\
v_{1}(t) & =V_{m 1} \cos \left(\omega_{0} t+\varphi_{1}\right) \\
& =\operatorname{Re}\left\{V_{1} e^{j \omega_{0} t}\right\}
\end{aligned} \\
& v_{2}(t)=\int_{-\infty}^{t} g\left(t-t^{\prime}\right) \operatorname{Re}\left\{V_{1} e^{j \omega_{o} t}\right\} d t^{\prime}
\end{aligned}
$$

then:

Now, since the impulse function $g(t)$ is real-valued (this is really important!) it can be shown that:

$$
\begin{aligned}
V_{2}(t) & =\int_{-\infty}^{t} g\left(t-t^{\prime}\right) \operatorname{Re}\left\{V_{1} e^{j \omega_{0} t^{t}}\right\} d t^{\prime} \\
& =\operatorname{Re}\left\{\int_{-\infty}^{t} g\left(t-t^{\prime}\right) V_{1} e^{j \omega_{0} t^{\prime}} d t^{\prime}\right\}
\end{aligned}
$$

The output signal

Now, applying what we have previously learned;

$$
\begin{aligned}
v_{2}(t) & =\operatorname{Re}\left\{\int_{-\infty}^{t} g\left(t-t^{\prime}\right) V_{1} e^{j \omega_{0} t^{\prime}} d t^{\prime}\right\} \\
& =\operatorname{Re}\left\{V_{1} \int_{-\infty}^{t} g\left(t-t^{\prime}\right) e^{j \omega_{0} t^{\prime}} d t^{\prime}\right\} \\
& =\operatorname{Re}\left\{V_{1} G\left(\omega_{0}\right) e^{j \omega_{0} t}\right\}
\end{aligned}
$$

Thus, we finally can conclude the real-valued output $v_{2}(t)$ due to the realvalued input:

$$
v_{1}(t)=V_{m 1} \cos \left(\omega_{0} t+\varphi_{1}\right)=\operatorname{Re}\left\{V_{1} e^{j \omega_{0} t}\right\}
$$

is:

$$
v_{2}(t)=\operatorname{Re}\left\{V_{2} e^{j \omega_{0} t}\right\}=V_{m 2} \cos \left(\omega_{0} t+\varphi_{2}\right)
$$

where:

$$
V_{2}=G\left(\omega_{0}\right) V_{1}
$$

The really important result here is the last one!

The Eigen value of the Linear operator is

 its "Frequency Response"

The magnitude and phase of the output sinusoid (expressed as complex value V_{2}) is related to the magnitude and phase of the input sinusoid (expressed as complex value V_{1}) by the system eigen value $G\left(\omega_{o}\right)$:

$$
\frac{V_{2}}{V_{1}}=G\left(\omega_{0}\right)
$$

Therefore we find that really often in electrical engineering, we:

1. Use sinusoidal (i.e., eigen function) sources.
2. Express the voltages and currents created by these sources as complex values (i.e., not as real functions of time)!

Make sure you know what complex voltages and currents physically represent!

For example, we might say " $V_{3}=2.0$ ", meaning:

$$
V_{3}=2.0=2.0 e^{j 0} \Rightarrow V_{3}(t)=\operatorname{Re}\left\{2.0 e^{j 0} e^{j \omega_{0} t}\right\}=2.0 \cos \omega_{0} t
$$

Or " $I_{L}=-3.0$ ", meaning:
$I_{L}=-2.0=3.0 e^{j \pi} \Rightarrow i_{L}(t)=\operatorname{Re}\left\{3.0 e^{j \pi} e^{j \omega_{o} t}\right\}=3.0 \cos \left(\omega_{0} t+\pi\right)$

Or " $V_{s}=j$ ", meaning:
$V_{s}=j=1.0 e^{j(\pi / 2)} \Rightarrow v_{s}(t)=\operatorname{Re}\left\{1.0 e^{j(\pi / 2)} e^{j \omega_{o} t}\right\}=1.0 \cos \left(\omega_{0} t+\pi / 2\right)$

Summarizing

* Remember, if a linear circuit is excited by a sinusoid (e.g., eigen function $\left.\exp \left[j \omega_{0} t\right]\right)$, then the only unknowns are the magnitude and phase of the sinusoidal currents and voltages associated with each element of the circuit.
* These unknowns are completely described by complex values, as complex values likewise have a magnitude and phase.
* We can always "recover" the real-valued voltage or current function by multiplying the complex value by $\exp \left[j \omega_{0} t\right]$ and then taking the real part, but typically we don't-after all, no new or unknown information is revealed by this operation!

