Amplifier Gain

One interesting characteristic of an amplifier is that it is a unilateral device-it makes a big difference which end you use as the input!

Most passive linear circuits (e.g., using only R, L and C) are reciprocal. With respect to a 2-port device, reciprocity means:

$$
Z_{12}(\omega)=Z_{21}(\omega) \quad \text { and } \quad y_{12}(\omega)=Y_{21}(\omega)
$$

For example, consider these two open-circuit voltage measurements:

Most linear circuits are reciprocal...

If this linear two-port circuit is also reciprocal, then when the two currents I_{1} and I_{2} are equal, so too will be the resulting open-circuit voltages V_{1} and V_{2} !

Thus, a reciprocal 2-port circuit will have the property:

$$
V_{1}=V_{2} \quad \text { when } \quad I_{1}=I_{2}
$$

Note this would likewise mean that:

$$
\frac{V_{2}}{I_{1}}=\frac{V_{1}}{I_{2}}
$$

And since (because of the open-circuits!):

$$
V_{2}=Z_{21} I_{1} \quad \text { and } \quad V_{1}=Z_{12} I_{2}
$$

We can conclude from this "experiment" that these trans-impedance parameters of a reciprocal 2-port device are equal:

$$
Z_{12}(\omega)=Z_{21}(\omega)
$$

...but amplifiers are not!

Contrast this with an amplifier.
A current on the input port will indeed produce a voltage on an open-circuited output:

However, amplifiers are not reciprocal. Placing the same current at the output will not create the equal voltage on the input-in fact, it will produce no voltage at all!

Amps are unilateral: an input and output

Since for this open-circuited input port we know that:

$$
Z_{12}=\frac{V_{1}}{I_{2}},
$$

the fact that voltage produced at the input port is zero $\left(V_{1}=0\right)$ means the trans-impedance parameter Z_{12} is likewise zero (or nearly so) for unilateral amplifiers:

$$
Z_{12}(\omega)=0 \quad \text { (for amplifiers) }
$$

Thus, the two equations describing an amplifier (a two-port device) simplify nicely.

Here's the simplification

Beginning with:

$$
V_{1}=Z_{11} I_{1}+Z_{12} I_{2}
$$

$$
V_{2}=Z_{21} I_{1}+Z_{22} I_{2}
$$

Now since $Z_{12}=0$, we find:

$$
\begin{aligned}
& V_{1}=Z_{11} I_{1} \\
& V_{2}=Z_{21} I_{1}+Z_{22} I_{2}
\end{aligned}
$$

Q: Gee; I'm sort of unimpressed by this simplification-I was hoping the result would be a little more-simple.

A: Actually, the two equations above represent a tremendous simplification-it completely decouples the input port from the output, and it allows us to assign very real physical interpretations to the remaining impedance parameters!

To see all these benefits (try to remain calm), we will now make a few changes in the notation.

A slight change in notation

First we explicitly denote voltage V_{1} as $V_{\text {in }}$, and likewise V_{2} as $V_{\text {out }}$ (the same with currents I).

Additionally, we change the current definition at the output port, reversing the direction of positive current as flowing outward from the output port. Thus:

And so, a tidy summary:

The input is independent of the output!

From this summary, it is evident that the relationship between the input current and input voltage is determined by impedance parameter Z_{11}-and Z_{11} only:

$$
Z_{11}=\frac{V_{i n}}{I_{i n}}
$$

Thus, the impedance parameter Z_{11} is known as the input impedance $Z_{\text {in }}$ of an (unilatera!!) amplifier:

$$
Z_{i n}(\omega) \doteq \frac{V_{i n}(\omega)}{I_{i n}(\omega)}=Z_{11}(\omega)
$$

The open-circuit output voltage

Now, consider the case where the output port of the amplifier is open-circuited ($I_{\text {out }}=0$):

The (open-circuit) output voltage is therefore simply:

$$
\begin{aligned}
V_{\text {out }} & =Z_{21} I_{\text {in }}-Z_{22} I_{\text {out }} \\
& =Z_{21} I_{\text {in }}-Z_{22}(0) \\
& =Z_{21} I_{\text {in }}
\end{aligned}
$$

The open-circuit output voltage is thus proportional to the input current.

Open-circuit trans-impedance

The proportionality constant is the impedance parameter Z_{21}-a value otherwise known as the open-circuit trans-impedance Z_{m} :

$$
Z_{m}(\omega) \doteq \frac{V_{o t}^{o c}(\omega)}{I_{i n}(\omega)}=Z_{21}(\omega)
$$

Thus, an (unilateral!) amplifier can be described as:

$$
\begin{aligned}
& V_{\text {in }}=Z_{\text {in }} I_{\text {in }} \\
& V_{\text {out }}=Z_{m} I_{\text {in }}-Z_{22} I_{\text {out }}
\end{aligned}
$$

Short-circuit output current

Q: What about impedance parameter Z_{22}; does it have any physical meaning?

A: It sure does!

Consider now the result of short-circuiting the amplifier output $\left(\therefore V_{\text {out }}=0\right)$:

Since $V_{\text {out }}=0$:

$$
V_{\text {out }}=0=Z_{m} I_{\text {in }}-Z_{22} I_{\text {out }}^{s c}
$$

we can quickly determine the short-circuit output current:

$$
I_{\text {out }}^{s c}=\frac{Z_{m} I_{\text {in }}}{Z_{22}}
$$

The output impedance

Q: I'm not seeing the significance of this result!?

A: Let's rearrange to determine Z_{22} :

$$
Z_{22}=\frac{Z_{m} I_{\text {in }}}{I_{\text {out }}^{s c}}
$$

Note the numerator-it is the open-circuit voltage $V_{\text {out }}^{o c}=Z_{m} I_{i n}$, and so:

$$
Z_{22}=\frac{Z_{m} I_{\text {in }}}{I_{\text {out }}^{c c}}=\frac{V_{\text {out }}^{o c}}{I_{\text {out }}^{s c}}
$$

Of course, you remember that the ratio of the open-circuit voltage to shortcircuit current is the output impedance of a source:

$$
Z_{\text {out }} \doteq \frac{V_{\text {out }}^{o c}}{I_{\text {out }}^{s c}}=Z_{22}
$$

These equations look familiar!

Thus, the output impedance of an (unilateral) amplifier is the impedance parameter Z_{22}, and so:

$$
\begin{aligned}
& V_{\text {in }}=Z_{\text {in }} I_{\text {in }} \\
& V_{\text {out }}=Z_{m} I_{\text {in }}-Z_{\text {out }} I_{\text {out }}
\end{aligned}
$$

Q: It's déjà vu all over again; haven't we seen equations like this before?
A: Yes! Recall the first (i.e., input) equation:

$$
V_{i n}=Z_{i n} I_{i n}
$$

is that of a simple load impedance:

$$
V_{i n}=Z_{i n} I_{\text {in }}
$$

Looks like a Thevenin's source

And the second (i.e., output) amplifier equation:

$$
V_{\text {out }}=Z_{m} I_{\text {in }}-Z_{\text {out }} I_{\text {out }}
$$

is of the form of a Thevenin's source:
where:

$$
V_{g}=Z_{m} I_{\text {in }} \quad \text { and } \quad Z_{g}=Z_{\text {out }}
$$

An equivalent circuit model

We can combine these two observations to form an equivalent circuit model of an (unilateral) amplifier:

Note in this model, the output of the amp is a dependent Thevenin's sourcedependent on the input current!

Let's make the model more useful

Q: So, do we always use this equivalent circuit to model an amplifier?

A: Um, actually no.
The truth is that we EE's rarely use this equivalent circuit (not that there's anything wrong with it!).

Instead, the equivalent circuit we use involves a slight modification of the model above.

Relate the input voltage to output voltage

To see this modification, we insert the first (i.e., input) equation, expressed as:

$$
I_{i n}=\frac{V_{i n}}{Z_{i n}}
$$

into the second (i.e., output) equation:

$$
\begin{aligned}
V_{\text {out }} & =Z_{m} I_{\text {in }}-Z_{\text {out }} I_{\text {out }} \\
& =\left(\frac{Z_{m}}{Z_{\text {in }}}\right) V_{\text {in }}-Z_{\text {out }} I_{\text {out }}
\end{aligned}
$$

Thus, the open-circuit output voltage can alternatively be expressed in terms of the input voltage!

$$
V_{\text {out }}^{o c}=\left(\frac{Z_{m}}{Z_{\text {in }}}\right) V_{\text {in }}
$$

Note the ratio $Z_{m} / Z_{i n}$ is unitless (a coefficient!).

Open-circuit voltage gain

This coefficient is known as the open-circuit voltage gain $A_{v o}$ of an amplifier:

The open-circuit voltage gain $A_{\text {vo }}(\omega)$ is perhaps the most important of all amplifier parameters.

To see why, consider the amplifier equations in terms of this voltage gain:

$$
\begin{aligned}
& V_{\text {in }}=Z_{\text {in }} I_{\text {in }} \\
& V_{\text {out }}=A_{\text {o }} V_{\text {in }}-Z_{\text {out }} I_{\text {out }}
\end{aligned}
$$

A more "useful" equivalent circuit

The equivalent circuit described by these equations is:

In this circuit model, the output Thevenin's source is again dependent-but now it's dependent on the input voltage!

Thus, in this model, the input voltage and output voltage are more directly related.

Now let's consider admittance parameters

Q: Are these the only two was to model a unilateral amplifier?

A: Hardly! Consider now admittance parameters.
A voltage on the input port of an amplifier will indeed produce a short-circuit output current:

The unilateral amplifier

However, since amplifiers are not reciprocal, placing the same voltage at the output will not create the equal current at the input-in fact, it will produce no current at all!

This again shows that amplifiers are unilateral devices, and so we find that the trans-admittance parameter Y_{12} is zero:

$$
y_{12}(\omega)=0 \quad \text { (for amplifiers) }
$$

In terms of our new notation

Thus, the two equations using admittance parameters simplify to:

$$
\begin{aligned}
& I_{1}=Y_{11} V_{1} \\
& I_{2}=Y_{21} V_{1}+Y_{22} V_{2}
\end{aligned}
$$

with the same definitions of input and output current/voltage used previously:

Input admittance

As with impedance parameters, it is apparent from this result that the input port is independent from the output.

Specifically, an input admittance can be defined as:

$$
Y_{i n}(\omega) \doteq \frac{I_{i n}(\omega)}{V_{i n}(\omega)}=Y_{11}(\omega)
$$

Note that the input admittance of an amplifier is simply the inverse of the input impedance:

$$
Y_{\text {in }}(\omega)=\frac{I_{i n}(\omega)}{V_{i n}(\omega)}=\frac{1}{Z_{i n}(\omega)}
$$

And from this we can conclude that for a unilateral amplifier (but only because it's unilatera!!):

$$
y_{11}=\frac{1}{Z_{11}}
$$

Looks like a Norton's source!

Likewise, the second amplifier equation:

$$
I_{\text {out }}=-Y_{21} V_{\text {in }}-Y_{22} V_{\text {out }}
$$

is of the form of a Norton's source:

where:

$$
I_{g}=-y_{21} V_{i n} \quad \text { and } \quad Z_{g}=\frac{1}{Y_{22}}
$$

Short-circuit trans-admittance

More specifically, we can define a short-circuit trans-admittance:
and an output impedance:

$$
y_{m} \doteq-y_{21}
$$

so that the amplifier equations are now:

$$
\begin{aligned}
& I_{\text {in }}=V_{\text {in }} / Z_{\text {in }} \\
& I_{\text {out }}=Y_{m} V_{\text {in }}-V_{\text {out }} / Z_{\text {out }}
\end{aligned}
$$

Yet another equivalent circuit model

The equivalent circuit described by these equations is:

Note in this model, the output of the amp is a dependent Norton's sourcedependent on the input voltage.

However, this particular amplifier model is likewise seldom used.

Short-circuit current gain

Instead, we again insert the input equation:

Into the output equation:

$$
\begin{aligned}
I_{\text {out }} & =-Y_{21} V_{\text {in }}-V_{\text {out }} / Z_{\text {out }} \\
& =-\left(\frac{Y_{21}}{Y_{11}}\right) I_{\text {in }}-V_{\text {out }} / Z_{\text {out }}
\end{aligned}
$$

Note the ratio $-y_{21} / y_{11}$ is unitless (a coefficient!).
This coefficient is known as the short-circuit current gain $A_{i s}$ of an amplifier:

$$
A_{i s}(\omega) \doteq \frac{I_{o u t}^{s c}}{I_{i n}}=\frac{Y_{m}}{Y_{11}}=-\frac{Y_{21}}{Y_{11}}
$$

A useful equivalent circuit model

Thus, we can also express the amplifier port equations as:

$$
\begin{aligned}
& I_{\text {in }}=V_{\text {in }} / Z_{\text {in }} \\
& I_{\text {out }}=A_{\text {is }} I_{\text {in }}-V_{\text {out }} / Z_{\text {out }}
\end{aligned}
$$

So, the equivalent circuit described by these equations is the last of four we shall consider:

In this circuit model, the output Norton's source is again dependent-but now it's dependent on the input current!

Thus, in this model, the input current and output current are more directly related.

