Amplifier Gain

One interesting characteristic of an amplifier is that it is a **unilateral** device—it makes a big difference **which end** you use as the **input**!

Most passive linear circuits (e.g., using only R, L and C) are **reciprocal**. With respect to a 2-port device, **reciprocity** means:

$$Z_{12}(\omega) = Z_{21}(\omega)$$
 and $Y_{12}(\omega) = Y_{21}(\omega)$

For example, consider these two **open-circuit voltage** measurements:

Most linear circuits are reciprocal...

If this linear two-port circuit is also **reciprocal**, then when the two currents I_1 and I_2 are equal, so too will be the resulting **open-circuit** voltages V_1 and V_2 !

Thus, a **reciprocal** 2-port circuit will have the property:

$$V_1 = V_2$$
 when $I_1 = I_2$

Note this would likewise mean that:

$$\frac{V_2}{I_1} = \frac{V_1}{I_2}$$

And since (because of the **open-circuits**!):

$$V_2 = Z_{21}I_1$$
 and $V_1 = Z_{12}I_2$

We can conclude from this "experiment" that these trans-impedance parameters of a **reciprocal** 2-port device are **equal**:

$$Z_{12}(\omega) = Z_{21}(\omega)$$

<u>...but amplifiers are not!</u>

Contrast this with an amplifier.

0

+

 $V_1 = 0$

A current on the input port will indeed produce a voltage on an open-circuited output:

+

 V_2

However, **amplifiers are not reciprocal**. Placing the same current at the **output** will **not** create the equal voltage on the input—in fact, it will produce **no voltage at all**!

Amps are unilateral: an input and output

Since for this **open-circuited** input port we know that:

the fact that voltage produced at the input port is zero ($V_1 = 0$) means the trans-impedance parameter Z_{12} is likewise **zero** (or nearly so) for unilateral amplifiers:

$$Z_{12}(w) = 0$$
 (for amplifiers)

Thus, the two equations describing an amplifier (a two-port device) **simplify nicely**.

To see all these benefits (**try** to remain calm), we will now make a few changes in the **notation**.

<u>A slight change in notation</u>

First we explicitly denote voltage V_1 as V_{in} , and likewise V_2 as V_{out} (the same with currents I).

Additionally, we change the current **definition** at the output port, **reversing** the direction of positive current as flowing **outward** from the output port. Thus:

The input is independent of the output!

From this summary, it is evident that the relationship between the **input** current and **input** voltage is determined by impedance parameter Z_{11} — and Z_{11} only:

 $Z_{11} = \frac{V_{in}}{I_{in}}$

Thus, the impedance parameter Z_{11} is known as the **input impedance** Z_{in} of an (unilateral!) amplifier:

$\sum_{in}(w) = \frac{1}{T(u)} = \sum_{11}(w)$	$Z_{in}(\omega)$ =	$\cdot V_{in}(\omega)$	$= Z_{11}(w)$
	$Z_{in}(w)$	$\overline{\tau}$	$- \mathbf{Z}_{11}(\mathbf{w})$
$I_{in}(\omega)$		$\mathbf{L}_{in}(\boldsymbol{\omega})$	

Open-circuit trans-impedance

The proportionality constant is the impedance parameter Z_{21} —a value otherwise

known as the open-circuit trans-impedance Z_m :

$$Z_{m}(\boldsymbol{\omega}) \doteq \frac{V_{out}^{oc}(\boldsymbol{\omega})}{I_{in}(\boldsymbol{\omega})} = Z_{21}(\boldsymbol{\omega})$$

Thus, an (unilateral!) amplifier can be described as:

$$V_{in} = Z_{in} I_{in}$$

$$V_{out} = Z_m I_{in} - Z_{22} I_{out}$$

Short-circuit output current

Q: What about impedance parameter Z_{22} ; does it have any physical meaning?

A: It sure does!

Consider now the result of **short-circuiting** the amplifier **output** ($\therefore V_{out} = 0$):

 $I_{out}^{sc} = \frac{Z_m I_{in}}{Z_{22}}$

These equations look familiar!

Thus, the **output impedance** of an (unilateral) amplifier is the impedance

 $V_{in} = Z_{in} I_{in}$

parameter Z_{22} , and so:

 $V_{out} = Z_m I_{in} - Z_{out} I_{out}$

A: Yes! Recall the first (i.e., input) equation:

$$V_{in} = Z_{in} I_{in}$$

Looks like a Thevenin's source

And the **second** (i.e., output) amplifier equation:

$$V_{out} = Z_m I_{in} - Z_{out} I_{out}$$

is of the form of a Thevenin's source:

<u>An equivalent circuit model</u>

We can combine these two observations to form an **equivalent circuit model** of an (unilateral) amplifier:

Let's make the model more useful

Q: So, do we always use this equivalent circuit to model an amplifier?

A: Um, actually no.

The **truth** is that we EE's rarely use this equivalent circuit (not that there's anything wrong with it!).

Instead, the equivalent circuit we use involves a **slight modification** of the model above.

Relate the input voltage to output voltage

To see this modification, we insert the **first** (i.e., input) equation, expressed as:

$$I_{in} = \frac{V_{in}}{Z_{in}}$$

into the **second** (i.e., output) equation:

$$V_{out} = Z_m I_{in} - Z_{out} I_{out}$$
$$= \left(\frac{Z_m}{Z_{in}}\right) V_{in} - Z_{out} I_{out}$$

Thus, the **open-circuit output voltage** can alternatively be expressed in terms of the **input voltage**!

$$\boldsymbol{V}_{out}^{oc} = \left(\frac{\boldsymbol{Z}_m}{\boldsymbol{Z}_{in}}\right) \boldsymbol{V}_{in}$$

Note the ratio Z_m/Z_m is unitless (a coefficient!).

<u>Open-circuit voltage gain</u>

This coefficient is known as the **open-circuit voltage gain** A_{ν} of an amplifier:

$$\mathcal{A}_{vo}(\omega) \doteq \frac{V_{out}^{oc}}{V_{in}} = \frac{Z_m}{Z_{in}} = \frac{Z_{21}}{Z_{11}}$$

The **open-circuit voltage gain** $\mathcal{A}_{vo}(\omega)$ is perhaps the most **important** of all amplifier parameters.

To see why, consider the amplifier equations in terms of this voltage gain:

$$V_{in} = Z_{in} I_{in}$$

$$V_{out} = A_{vo} V_{in} - Z_{out} I_{out}$$

<u>A more "useful" equivalent circuit</u>

The equivalent circuit described by these equations is:

 I_{in}

 I_{out}

+

V_{out}

In this circuit model, the output Thevenin's source is again dependent—but now it's dependent on the input **voltage**!

Thus, in this model, the input **voltage** and output **voltage** are more **directly related**.

Now let's consider admittance parameters

- Q: Are these the only two was to model a unilateral amplifier?
- A: Hardly! Consider now admittance parameters.
- A voltage on the input port of an amplifier will indeed produce a short-circuit output current:

The unilateral amplifier

However, since amplifiers are **not** reciprocal, placing the **same** voltage at the output will **not** create the equal current at the input—in fact, it will produce **no current at all**!

This again shows that amplifiers are **unilateral** devices, and so we find that the trans-admittance parameter Y_{12} is **zero**:

 $Y_{12}(w) = 0$ (for amplifiers)

In terms of our new notation

Thus, the two equations using admittance parameters simplify to:

 $I_2 = Y_{21} V_1 + Y_{22} V_2$

with the same definitions of input and output current/voltage used previously:

 $\boldsymbol{I}_1 = \boldsymbol{Y}_{11} \boldsymbol{V}_1$

Input admittance

As with impedance parameters, it is apparent from this result that the **input** port is **independent** from the **output**.

Specifically, an input admittance can be defined as:

$$Y_{in}(\omega) \doteq rac{I_{in}(\omega)}{V_{in}(\omega)} = Y_{11}(\omega)$$

Note that the **input admittance** of an amplifier is simply the **inverse** of the **input impedance**:

$$Y_{in}(\omega) = rac{I_{in}(\omega)}{V_{in}(\omega)} = rac{1}{Z_{in}(\omega)}$$

And from this we can conclude that for a **unilateral** amplifier (but **only** because it's unilateral!):

Looks like a Norton's source!

Likewise, the **second** amplifier equation:

$$\boldsymbol{I}_{out} = -\boldsymbol{Y}_{21} \, \boldsymbol{V}_{in} - \boldsymbol{Y}_{22} \, \boldsymbol{V}_{out}$$

is of the form of a Norton's source:

Short-circuit trans-admittance

More specifically, we can define a short-circuit trans-admittance:

$$Y_m \doteq -Y_{21}$$

and an output impedance:

so that the amplifier equations are **now**:

$$I_{in} = V_{in}/Z_{in}$$

 $I_{out} = Y_m V_{in} - V_{out} / Z_{out}$

<u>Yet another equivalent circuit model</u>

The equivalent circuit described by these equations is:

Note in this model, the output of the amp is a **dependent** Norton's source dependent on the **input voltage**.

However, this particular amplifier model is likewise seldom used.

<u>Short-circuit current gain</u>

Instead, we again insert the input equation:

$$V_{in} = \frac{I_{in}}{Y_{11}}$$

Into the **output** equation:

$$I_{out} = -Y_{21} V_{in} - V_{out} / Z_{out}$$
$$= -\left(\frac{Y_{21}}{Y_{11}}\right) I_{in} - V_{out} / Z_{out}$$

Note the ratio $-Y_{21}/Y_{11}$ is unitless (a coefficient!).

This coefficient is known as the short-circuit current gain A_{is} of an amplifier:

$$\mathcal{A}_{is}(\omega) \doteq \frac{\mathcal{I}_{out}^{sc}}{\mathcal{I}_{in}} = \frac{\mathcal{Y}_{m}}{\mathcal{Y}_{11}} = -\frac{\mathcal{Y}_{21}}{\mathcal{Y}_{11}}$$

+

V_{out}

Z_{out} <

<u>A useful equivalent circuit model</u>

Thus, we can also express the amplifier port equations as:

$$I_{out} = A_{is} I_{in} - V_{out} / Z_{out}$$

So, the equivalent circuit described by **these** equations is the **last** of **four** we shall consider: I_{in}

 $I_{in} = V_{in}/Z_{in}$

*Z*_{in} <

 V_{in}

In this circuit model, the output Norton's source is again dependent—but now it's dependent on the input **current**!

Thus, in this model, the input **current** and output **current** are more directly related.

Jim Stiles

 $A_{is} I_{in}$