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 Analysis of Circuits Driven by Arbitrary Functions

Q:  What happens if a linear circuit is excited by some function that is not an “eigen function”?  Isn’t limiting our analysis to sinusoids too restrictive?

A:   Not as restrictive as you might think.

Because sinusoidal functions are the eigen-functions of linear, time-invariant systems, they have become fundamental to much of our electrical engineering infrastructure—particularly with regard to communications.

For example, every radio and TV station is assigned its very own eigen function (i.e., its own frequency 
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)! 

Eigen functions: without them communication would be impossible
It is very important that we use eigen functions for electromagnetic communication, otherwise the received signal might look grotesquely different from the one that was transmitted!
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With sinusoidal functions (being eigen functions and all), we know that receive function will have precisely the same form as the one transmitted (albeit quite a bit smaller).
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Thus, our assumption that a linear circuit is excited by a sinusoidal function is often a very accurate and practical one!

What if the signal is not sinusoidal?
Q: Still, we often find a circuit that is not driven by a sinusoidal source.  How would we analyze this circuit?
A: Recall the property of linear operators:
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We now know that we can expand the function:
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and we found that:
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Let’s choose Eigen functions as our basis
We found that any linear operation 
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 is greatly simplified if we choose as our basis function the eigen function of linear systems:
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so that:
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And so:

[image: image8.wmf](

)

(

)

nnn

jtjtjt

nnnn

nnn

vtaeaeaGe

LLL

www

w

¥¥¥

=-¥=-¥=-¥

éù

éù

éù

===

êú

ëû

ëû

ëû

ååå



Just follow these steps…
Thus, for the example:
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We follow these analysis steps:

1.  Expand the input function 
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where:
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…and the output is determined
2. Evaluate the eigen values of the linear system:
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3.  Perform the linear operation (the convolution integral) that relates 
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A Summary
Summarizing:           
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where:              
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and:
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As stated earlier, the signal expansion used here is the Fourier Series.

The Fourier Transform
Say that the timewidth T of the signal 
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 becomes infinite.  In this case we find our analysis becomes:
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where:              
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and:
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The signal expansion in this case is the Fourier Transform.

We find that as 
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 the number of discrete system eigen values 
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 become so numerous that they form a continuum—
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 is a continuous function of frequency
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We thus call the function 
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 the eigen spectrum or frequency response of the circuit.

This still looks very difficult!
Q: You claim that all this fancy mathematics (e.g., eigen functions and eigen values) make analysis of linear systems and circuits much easier, yet to apply these techniques, we must determine the eigen values or eigen spectrum:
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Neither of these operations look at all easy.  
And in addition to performing the integration, we must somehow determine the impulse function 
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 of the linear system as well !

Just how are we supposed to do that?

It’s not nearly as difficult as it appears!
A: An insightful question!  
Determining the impulse response 
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and then the frequency response 
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 does appear to be exceedingly difficult—and for many linear systems it indeed is!

However, much to our great relief, we can determine the eigen spectrum 
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 of linear circuits without having to perform a difficult integration.  
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In fact, we don’t even need to know the impulse response 
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