Eigen Values of the Laplace

Transform

Well, I fibbed a little when I stated that the Eigen function of linear, time-invariant systems (circuits) is:

$$
\mathcal{L}\left\{e^{j \omega t}\right\}=\boldsymbol{G}(\omega) e^{j \omega t}
$$

Instead, the more general Eigen function is:

$$
\mathcal{L}\left\{e^{s t}\right\}=G(s) e^{s t}
$$

Where s is a complex (i.e., real and imaginary) frequency of the form:

$$
s=\sigma+j \omega
$$

such that:

$$
e^{s t}=e^{(\sigma+j \omega) t}=e^{\sigma t} e^{j \omega t}
$$

Note then, if $\sigma=0$, the Eigen function $e^{s t}$ becomes the previously described Eigen function $e^{j \omega t}$!

What does this function mean?

Q: Yikes! I understand $e^{\text {st }}$ even less than I understood $e^{j \omega t}$! What does this function mean?

A: Remember, the function $e^{s t}$ is a complex function-it is actually an expression of two real-value functions.

These two real-valued functions could be its real and imaginary components:

$$
\begin{aligned}
e^{s t} & =e^{\sigma t} e^{+j \omega t} \\
& =e^{\sigma t}(\cos \omega t+j \sin \omega t) \\
& =e^{\sigma t} \cos \omega t+j e^{\sigma t} \sin \omega t
\end{aligned}
$$

Magnitude and phase

Or, the two real-valued functions could alternatively be the complex values magnitude and phase:

If $\sigma=0$, then $e^{s t}=e^{+j \omega t}$, and we're back to the time-harmonic Eigen function:

Can we use this as a basis?

Q: What about basis functions? Can we use these Eigen function to expand a signal?

A: Sure! Instead of the Fourier Transform, the result of expanding a signal with basis function $e^{s t}$ is the Laplace Transform.

For example, again consider the following linear circuit:

A summary

Using the Laplace transform, we can determine the output voltage $v_{2}(t)$ by:

1. Expand the input signal $v_{1}(t)$ using the basis function $e^{s t}$:

$$
V_{1}(s)=\int_{0}^{+\infty} v_{1}(t) e^{-s t} d t \quad \text { (or use a look-up table!) }
$$

2. Determine the Eigen value of the linear operator relating $v_{1}(t)$ to $v_{2}(t)$:

$$
\begin{aligned}
& v_{2}(t)=\mathcal{L}\left\{v_{1}(t)\right\}=\int_{-\infty}^{\infty} g\left(t-t^{\prime}\right) v_{1}\left(t^{\prime}\right) d t^{\prime} \\
& \Rightarrow \quad V_{2}(s)=G(s) v_{1}(s)
\end{aligned}
$$

where:

$$
G(s)=\int_{-\infty}^{+\infty} g(t) e^{-s t} d t
$$

3. Determine $v_{2}(t)$ from the inverse Laplace transform of $V_{2}(s)$ (definitely use a look-up table!).

The Eigen values of circuit elements

Q: But how do we determine $G(s)$?

A: It's just pretty darn simple!
Again, we determine the Eigen value of each linear operator of our three linear circuit elements-only this time we use the Eigen function $e^{s t}$!

$$
\begin{aligned}
& i_{R}(t)=\mathcal{L}_{y}^{R}\left[v_{R}(t)\right]=\frac{v_{R}(t)}{R} \underset{\longrightarrow}{\stackrel{i_{R}(t)}{\longrightarrow}} \\
& \mathcal{L}_{y}^{R}\left[e^{s t}\right]=\frac{e^{s t}}{R} \\
& v_{R}(t) \\
& I_{R}(s)=\frac{V_{R}(s)}{R} \\
& \xrightarrow{i_{c}(t)} \quad i_{c}(t)=\mathcal{L}_{y}^{c}\left[v_{c}(t)\right]=C \frac{d v_{c}(t)}{d t} \\
& \begin{array}{c}
v_{c}(t) \quad \frac{1}{\square} \mathcal{L}_{y}^{c}\left[e^{s t}\right]=C \frac{d e^{s t}}{d t}=s C e^{s t} \\
I_{c}(s)=S C V_{c}(s)
\end{array}
\end{aligned}
$$

Just apply your circuits knowledge!

$$
\begin{array}{cc}
\mathcal{L}_{y}^{L}\left[v_{L}(t)\right]=i_{L}(t)=\frac{1}{L} \int_{-\infty}^{t} v_{L}\left(t^{\prime}\right) d t^{\prime} & \stackrel{+}{i_{L}(t)} \\
\mathcal{L}_{y}^{L}\left[e^{s t}\right]=\frac{1}{L} \int_{-\infty}^{t} e^{s t} d t^{\prime}=\frac{1}{s L} e^{s t} & v_{L}(t) \quad< \\
I_{L}(s)=\frac{V_{L}(s)}{s L} & -
\end{array}
$$

As a result we can determine the Eigen value $G(s)$ of a linear circuit by applying our circuit theory:

