<u>Eigen Values of the Laplace</u> <u>Transform</u>

Well, I fibbed a little when I stated that the Eigen function of linear, time-invariant systems (circuits) is:

$$\mathcal{L}\left\{e^{j\omega\,t}\right\} = \mathcal{G}(\omega)e^{j\omega\,t}$$

Instead, the more general Eigen function is:

$$\mathcal{L}\left\{e^{st}\right\} = \mathcal{G}(s)e^{st}$$

Where s is a complex (i.e., real and imaginary) frequency of the form:

$$s = \sigma + j \omega$$

such that:

$$e^{st} = e^{(\sigma+jw)t} = e^{\sigma t}e^{jwt}$$

Note then, if $\sigma = 0$, the Eigen function e^{st} becomes the previously described Eigen function e^{jwt} !

What does this function mean?

Q: Yikes! I understand e^{st} even **less** than I understood $e^{j\omega t}$! What does this function mean?

A: Remember, the function e^{st} is a complex function—it is actually an expression of two real-value functions.

These two real-valued functions could be its real and imaginary components:

$$e^{st} = e^{\sigma t}e^{+j\omega t}$$

$$= e^{\sigma t}\left(\cos \omega t + j\sin \omega t\right)$$

$$= e^{\sigma t}\cos \omega t + je^{\sigma t}\sin \omega t$$

Magnitude and phase

Or, the two real-valued functions could alternatively be the complex values magnitude and phase:

 $\sigma = -0.2$

$$\omega = 3.2$$

If $\sigma=0$, then $e^{st}=e^{+j\omega t}$, and we're **back** to the time-harmonic Eigen function:

Can we use this as a basis?

Q: What about basis functions? Can we use these Eigen function to expand a signal?

A: Sure! Instead of the Fourier Transform, the result of expanding a signal with basis function e^{st} is the **Laplace Transform**.

For example, again consider the following linear circuit:

A summary

Using the Laplace transform, we can determine the output voltage $v_2(t)$ by:

1. Expand the input signal $v_1(t)$ using the basis function e^{st} :

$$V_1(s) = \int_0^{+\infty} v_1(t) e^{-st} dt$$
 (or use a look-up table!)

2. Determine the **Eigen value** of the linear operator relating $v_1(t)$ to $v_2(t)$:

$$v_2(t) = \mathcal{L}\left\{v_1(t)\right\} = \int_{-\infty}^{\infty} g(t-t')v_1(t')dt'$$

$$\Rightarrow$$
 $V_2(s) = G(s)V_1(s)$

where:

$$G(s) = \int_{-\infty}^{+\infty} g(t) e^{-st} dt$$

3. Determine $\nu_2(t)$ from the inverse Laplace transform of $\nu_2(s)$ (definitely use a look-up table!).

The Eigen values of circuit elements

Q: But how do we determine G(s)?

A: It's just pretty darn simple!

Again, we determine the Eigen value of each linear operator of our **three** linear circuit elements—only **this** time we use the Eigen function e^{st} !

$$i_{R}(t) = \mathcal{L}_{y}^{R} \left[v_{R}(t) \right] = \frac{v_{R}(t)}{R} \xrightarrow{i_{R}(t)}$$

$$\mathcal{L}_{y}^{R} \left[e^{st} \right] = \frac{e^{st}}{R} \qquad v_{R}(t)$$

$$I_{R}(s) = \frac{V_{R}(s)}{R} \xrightarrow{i_{C}(t)} \qquad i_{C}(t) = \mathcal{L}_{y}^{C} \left[v_{C}(t) \right] = C \xrightarrow{dv_{C}(t)} dt$$

$$v_{C}(t) \xrightarrow{c} \mathcal{L}_{y}^{C} \left[e^{st} \right] = C \xrightarrow{de^{st}} dt = sC e^{st}$$

$$I_{C}(s) = sC V_{C}(s)$$

Just apply your circuits knowledge!

$$\mathcal{L}_{\mathcal{Y}}^{l}\left[v_{l}(t)\right] = i_{l}(t) = \frac{1}{L} \int_{-\infty}^{t} v_{l}(t') dt'$$

$$+$$

$$\mathcal{L}_{\mathcal{Y}}^{l}\left[e^{st}\right] = \frac{1}{L} \int_{-\infty}^{t} e^{st} dt' = \frac{1}{sL} e^{st}$$

$$v_{l}(t)$$

$$I_{L}(s) = \frac{V_{L}(s)}{sL}$$

As a result we can determine the Eigen value G(s) of a linear circuit by applying our circuit theory:

$$\begin{array}{c|c}
I_{1}(s) & \downarrow & \downarrow \\
\downarrow + & \downarrow & \downarrow \\
V_{1}(s) & \downarrow & \downarrow \\
\downarrow V_{1}(s) & \downarrow & \downarrow \\
\downarrow V_{2}(s) & \downarrow & \downarrow \\
\downarrow V_{2}(s) & \downarrow & \downarrow \\
\downarrow V_{1}(s) & \downarrow & \downarrow \\
\downarrow V_{1}(s) & \downarrow & \downarrow \\
\downarrow V_{2}(s) & \downarrow & \downarrow \\
\downarrow V_{1}(s) & \downarrow & \downarrow \\
\downarrow V_{2}(s) & \downarrow & \downarrow \\
\downarrow V_{1}(s) & \downarrow & \downarrow \\
\downarrow V_{2}(s) & \downarrow \\
\downarrow V_{3}(s) & \downarrow \\
\downarrow V_{4}(s) &$$