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Frequency Bands
The Eigen value 
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 of a linear operator is of course dependent on frequency 
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—the numeric value of 
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 depends on the frequency 
[image: image4.wmf]ω

 of the basis function 
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The frequency 
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 has units of radians/second; it can likewise be expressed as:
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where f  is the sinusoidal frequency in cycles/second (i.e., Hertz). 

As a result, the function 
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 is also known as the frequency response of a linear operator (e.g. a linear circuit).
The numeric value of the signal frequency f  has significant practical ramifications to us electrical engineers, beyond that of simply determining the numeric value 
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These practical ramifications include the packaging, manufacturing, and interconnection of electrical and electronic devices.

The problem is that every real circuit is awash in inductance and  capacitance! 

Q:  If this is such a problem, shouldn’t we just avoid using capacitors and inductors?
A:  Well, capacitors and inductors are particular useful to us EE’s. But, even without capacitors and inductors, we find that our circuits are still awash in capacitance and inductance!

Q:  ???

A:  Every circuit that we construct will have a inherent set of parasitic inductance and capacitance.
Parasitic inductance and capacitance is associated with elements other than capacitors and inductors.  For example, every wire and lead has a small inductance associated with it:
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Consider then a “wire” above a ground plane:
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From KVL and KCL, we “know” that:
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Thus, the linear operator (for example) relating voltage 
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 to voltage 
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 has an Eigen value equal to 1.0 for all frequencies:
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But, the unfortunate reality is that the “wire” exhibits inductance, and likewise a capacitance between it and the ground plane:
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We now see that the in fact the currents and voltage must be dissimilar:
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And so the Eigen  value of the linear operator is not equal to 1.0!
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Now, these parasitic values of L and C  are likely to be very small, so that if the frequency is “low” the  inductive impedance is quite small:
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    (almost a short circuit!)
And, the capacitive impedance (if the frequency is low) is quite large:
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        (almost an open circuit!)

Thus, a low-frequency approximation of our wire is thus:
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Which leads to our original KVL and KCL conclusion:


[image: image18.wmf]1212

VVII

==


Thus, as our signal frequency increases, the we often find that the “frequency response” 
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 will in reality be different from that predicted by our circuit model—unless explicit parasitics are considered in that model.

As a result, the response 
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 may vary from our expectations as the signal frequency increases!
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For frequencies in the kilohertz (audio band) of megahertz (video band), parasitics are generally not a problem.
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However, as we move into the 100’s of megahertz, or gigahertz (RF and microwave bands), the effects of parasitic inductance and capacitance are not only significant—they’re unavoidable!  
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