Impedance and Admittance Parameters

Say we wish to connect the output of one circuit to the input of another.

The terms "input" and "output" tells us that we wish for signal energy to flow from the output circuit to the input circuit.

Energy flows from source to load

In this case, the first circuit is the source, and the second circuit is the load.

Each of these two circuits may be quite complex, but we can always simply this problem by using equivalent circuits.

Load is the input impedance

For example, if we assume time-harmonic signals (i.e., eigen functions!), the load can be modeled as a simple lumped impedance, with a complex value equal to the input impedance of the circuit.

Equivalent Circuits

The source circuit can likewise be modeled using either a Thevenin's or Norton's equivalent.

This equivalent circuit can be determined by first evaluating (or measuring) the open-circuit output voltage $V_{\text {out }}^{\text {oc }}$:

And likewise evaluating (or measuring) the short-circuit output current $I_{\text {out }}^{\text {sc }}$:

Thevenin's

From these two values ($V_{\text {out }}^{o c}$ and $I_{\text {out }}^{s c}$) we can determine the Thevenin's equivalent source:

$$
V_{g}=V_{o u t}^{o c} \quad Z_{g}=\frac{V_{o c t}^{o c t}}{I_{o u t}^{s c}}
$$

$$
\begin{aligned}
& V_{\text {out }}=V_{g}-Z_{g} I_{\text {out }} \\
& I_{\text {out }}=\frac{V_{g}-V_{\text {out }}}{Z_{g}}
\end{aligned}
$$

Norton's

Or, we could use a Norton's equivalent circuit:

$$
I_{g}=I_{o u t}^{s c} \quad Z_{g}=\frac{V_{o c t}^{o c}}{I_{o u t}^{s c}}
$$

$$
\begin{aligned}
& I_{\text {out }}=I_{g}-V_{\text {out }} / Z_{g} \\
& V_{\text {out }}=\left(I_{g}-I_{\text {out }}\right) Z_{g}
\end{aligned}
$$

Circuit Model

Can be modeled with equivalent circuits as:

Circuit \#2 (load)

Please note again that we have assumed a time harmonic source, such that all the values in the circuit above ($V_{g}, Z_{g}, I, V, Z_{L}$) are complex (i.e., they have a magnitude and phase).

Two-Port circuits

Q: But, circuits like filters and amplifiers are two-port devices, they have both an input and an output. How do we characterize a two-port device?

A: Indeed, many important components are two-port circuits.
For these devices, the signal power enters one port (i.e., the input) and exits the other (the output).

Between source and load

These two-port circuits typically do something to alter the signal as it passes from input to output (e.g., filters it, amplifies it, attenuates it).

We can thus assume that a source is connected to the input port, and that a load is connected to the output port.

How to characterize?

Again, the source circuit may be quite complex, consisting of many components. However, at least one of these components must be a source of energy.

Likewise, the load circuit might be quite complex, consisting of many components. However, at least one of these components must be a sink of energy.

Q: But what about the two-port circuit in the middle? How do we characterize it?

A: A linear two-port circuit is fully characterized by just four impedance parameters!

Do this little experiment

Note that inside the "blue box" there could be anything from a very simple linear circuit to a very large and complex linear system.

Now, say there exists a non-zero current at input port 1 (i.e., $I_{1} \neq 0$), while the current at port 2 is known to be zero (i.e., $I_{2}=0$).

Say we measure/determine the current at port 1 (i.e., determine I_{1}), and we then measure/determine the voltage at the port 2 plane (i.e., determine V_{2}).

Impedance parameters

The complex ratio between V_{2} and I_{1} is know as the trans-impedance parameter Z_{21} :

$$
Z_{21}(\omega)=\frac{V_{2}(\omega)}{I_{1}(\omega)}
$$

Note this trans-impedance parameter is the Eigen value of the linear operator relating current $i_{1}(t)$ to voltage $v_{2}(t)$:

Thus:

$$
G_{21}(\omega)=Z_{21}(\omega)
$$

Likewise, the complex ratio between V_{1} and I_{1} is the trans-impedance parameter Z_{11} :

$$
Z_{11}(\omega)=\frac{V_{1}(\omega)}{I_{1}(\omega)}
$$

A second experiment

Now consider the opposite situation, where there exists a non-zero current at port 2 (i.e., $I_{2} \neq 0$), while the current at port 1 is known to be zero (i.e., $I_{2}=0$).

The result is two more impedance parameters:

$$
Z_{12}(\omega)=\frac{V_{1}(\omega)}{I_{2}(\omega)} \quad Z_{22}(\omega)=\frac{V_{2}(\omega)}{I_{2}(\omega)}
$$

Thus, more generally, the ratio of the current into port n and the voltage at port m is:

$$
Z_{m n}=\frac{V_{m}}{I_{n}} \quad \text { (given that } I_{k}=0 \text { for } k \neq n \text {) }
$$

Open circuits enforce $I=0$

A: Place an open circuit at that port!
Placing an open at a port (and it must be at the port!) enforces the
 condition that $I=0$.

Now, we can thus equivalently state the definition of trans-impedance as:

$$
Z_{m n}=\frac{V_{m}}{I_{n}} \quad \text { (given that port } k \neq n \text { is open - circuited) }
$$

What's the point?

Q: As impossible as it sounds, this handout is even more pointless than all your previous efforts. Why are we studying this? After all, what is the likelihood that a device will have an open circuit on one of its ports?!

A: OK, say that neither port is open-circuited, such that we have currents simultaneously on both of the two ports of our device.

Since the device is linear, the voltage at one port is due to both port currents.
This voltage is simply the coherent sum of the voltage at that port due to each of the two currents!

Specifically, the voltage at each port can is:

$$
\begin{aligned}
& V_{1}=Z_{11} I_{1}+Z_{12} I_{2} \\
& V_{2}=Z_{21} I_{1}+Z_{22} I_{2}
\end{aligned}
$$

They're a function of frequency!

Thus, these four impedance parameters completely characterizes a linear, 2port device.

Effectively, these impedance parameters describes a 2-port device the way that Z_{L} describes a single-port device (e.g., a load)!

But beware! The values of the impedance matrix for a particular device or circuit, just like Z_{L}, are frequency dependent!

A complete equivalent circuit

Now, we can use our equivalent circuits to model this system:

Note in this circuit there are 4 unknown values-two voltages (V_{1} and V_{2}), and two currents (I_{1} and I_{2}).
\rightarrow Our job is to determine these 4 unknown values!

Let's do some algebra!

Let's begin by looking at the source, we can determine from KVL that:

$$
V_{g}-Z_{g} I_{1}=V_{1}
$$

And so with a bit of algebra:

$$
I_{1}=\frac{V_{g}-V_{1}}{Z_{g}} \quad(\leftarrow \text { look, Ohm's Law! }
$$

Now let's look at our two-port circuit. If we know the impedance matrix (i.e., all four trans-impedance parameters), then:

$$
\begin{aligned}
& V_{1}=Z_{11} I_{1}+Z_{12} I_{2} \\
& V_{2}=Z_{21} I_{1}+Z_{22} I_{2}
\end{aligned}
$$

Watch the minus sign!

Finally, for the load:

A: Be very careful with the notation.

Current I_{2} is defined as positive when it is flowing into the two port circuit. This is the notation required for the impedance matrix.

Thus, positive current I_{2} is flowing out of the load impedance-the opposite convention to Ohm's Law.

This is why the minus sign is required.

A very good thing

Now let's take stock of our results. Notice that we have compiled four independent equations, involving our four unknown values:

$$
\begin{aligned}
& I_{1}=\frac{V_{g}-V_{1}}{Z_{g}} \\
& I_{2}=-\frac{V_{2}}{Z_{L}}
\end{aligned}
$$

Q: Four equations and four unknowns! That sounds like a very good thing!

$$
V_{1}=Z_{11} I_{1}+Z_{12} I_{2}
$$

$V_{2}=Z_{21} I_{1}+Z_{22} I_{2}$
A: It is! We can apply a bit of algebra and solve for the unknown currents and voltages:

$$
\begin{array}{ll}
I_{1}=V_{g} \frac{Z_{22}+Z_{L}}{\left(Z_{11}+Z_{g}\right)\left(Z_{22}+Z_{L}\right)-Z_{12} Z_{21}} & I_{2}=-V_{g} \frac{Z_{21}}{\left(Z_{11}+Z_{g}\right)\left(Z_{22}+Z_{L}\right)-Z_{12} Z_{21}} \\
V_{1}=V_{g} \frac{Z_{11}\left(Z_{22}+Z_{L}\right)-Z_{12} Z_{21}}{\left(Z_{11}+Z_{g}\right)\left(Z_{22}+Z_{L}\right)-Z_{12} Z_{21}} & V_{2}=V_{g} \frac{Z_{L} Z_{21}}{\left(Z_{11}+Z_{g}\right)\left(Z_{22}+Z_{L}\right)-Z_{12} Z_{21}}
\end{array}
$$

Admittance Parameters

Q: Are impedance parameters the only way to characterize a 2-port linear circuit?

A: Hardly! Another method uses admittance parameters.
The elements of the Admittance Matrix are the trans-admittance parameters $Y_{m n}$, defined as:

$$
Y_{m n}=\frac{I_{m}}{V_{n}} \quad \text { (given that } \quad V_{k}=0 \text { for } k \neq n \text {) }
$$

Note here that the voltage at one port must be equal to zero. We can ensure that by simply placing a short circuit at the zero-voltage port!

Short circuits enforce $V=0$

Now, we can equivalently state the definition of trans-admittance as:

$$
Y_{m n}=\frac{V_{m}}{I_{n}} \quad \text { (given that all ports } k \neq n \text { are short - circuited) }
$$

Just as with the trans-impedance values, we can use the trans-admittance values to evaluate general circuit problems, where none of the ports have zero voltage.

Since the device is linear, the current at any one port due to all the port currents is simply the coherent sum of the currents at that port due to each of the port voltages!

$$
\begin{aligned}
& I_{1}=Y_{11} V_{1}+Y_{12} V_{2} \\
& I_{2}=Y_{21} V_{1}+Y_{22} V_{2}
\end{aligned}
$$

