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Linear Circuit Elements

Most microwave devices can be described or modeled in terms of the three standard circuit elements: 
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1.  Resistance (R)
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2.  Inductance (L)
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3.  Capacitance (C)
For the purposes of circuit analysis, each of these three elements are defined in terms of the mathematical  relationship between the difference in electric potential 
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 between the two terminals of the device (i.e., the voltage across the device), and the current 
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flowing through the device.

We find that for these three circuit elements, the relationship between 
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 can be expressed as a linear operator!
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Since the circuit behavior of these devices can be expressed with linear operators, these devices are referred to as linear circuit elements.

A linear operator describes any relationship
Q:  Well, that’s simple enough, but what about an element formed from a composite of these fundamental elements?  

For example, for example, how are 
[image: image8.wmf](

)

vt

 and 
[image: image9.wmf](

)

it

 related in the circuit below??
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A:  It turns out that any circuit constructed entirely with linear circuit elements is likewise a linear system (i.e., a linear circuit).

As a result, we know that that there must be some linear operator that relates 
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in your example!
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This is very useful for multi-port networks
The circuit above provides a good example of a single-port  (a.k.a. one-port) network.

We can of course construct networks with two or more ports; an example of a two-port network is shown below:

[image: image41.wmf](

)

vt

+

-


Since this circuit is linear, the relationship between all voltages and currents can likewise be expressed as linear operators, e.g.:
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 The linear operator is 

a convolution integral
Q: Yikes! What would these linear operators for this circuit be?  How can we determine them?

A:  It turns out that linear operators for all linear circuits can all be expressed in precisely the same form!  
For example, the linear operators of a single-port network are:
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In other words, the linear operator of linear circuits can always be expressed as a convolution integral—a convolution with a circuit impulse function 
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The impulse response
Q:  But just what is this “circuit impulse response”??

A: An impulse response is simply the response of one circuit function (i.e., 
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 or 
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)  due to a specific stimulus by another. 
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That specific stimulus is the impulse function 
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The impulse function can be defined as:
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Such that is has the following two properties:

1.    
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2.  
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We can define all sorts 

of impulse responses
The impulse responses of the one-port example are therefore defined as:
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and:
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Meaning simply that 
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 is equal to the voltage function 
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 when the circuit is “thumped” with a impulse current (i.e., 
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 is equal to the current 
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 when the circuit is “thumped” with a impulse voltage (i.e., 
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We can make convolution integrals simple!
Similarly, the relationship between the input and the output of a two-port network can be expressed as:
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where:
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Note that the circuit impulse response must be causal (nothing can occur at the output until something occurs at the input), so that:
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Q:  Yikes! I recall evaluating convolution integrals to be messy, difficult and stressful. Surely there is an easier way to describe linear circuits!?!

A: Nope! The convolution integral is all there is.  
However, we can use our linear systems theory toolbox to greatly simplify the evaluation of a convolution integral!
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