Linear Circuit Elements

Most microwave devices can be described or modeled in terms of the three standard circuit elements:

1. RESISTANCE (R)

2. INDUCTANCE (L)

3. CAPACITANCE (C)

For the purposes of circuit analysis, each of these three elements are defined in terms of the mathematical relationship between the difference in electric potential $v(t)$ between the two terminals of the device (i.e., the voltage across the device), and the current $i(t)$ flowing through the device.

We find that for these three circuit elements, the relationship between $v(t)$ and $i(t)$ can be expressed as a linear operator!

Since the circuit behavior of these devices can be expressed with linear operators, these devices are referred to as linear circuit elements.

A linear operator describes any relationship

Q: Well, that's simple enough, but what about an element formed from a composite of these fundamental elements?

For example, for example, how are $v(t)$ and $i(t)$ related in the circuit below??
$\mathcal{L}_{z}[i(t)]=v(t)=? ? ?$

A: It turns out that any circuit constructed entirely with linear circuit elements is likewise a linear system (i.e., a linear circuit).

As a result, we know that that there must be some linear operator that relates $v(t)$ and $i(t)$ in your example!

$$
\mathcal{L}_{\mathcal{Z}}[i(t)]=v(t)
$$

This is very useful for multi-port networks

The circuit above provides a good example of a single-port (a.k.a. one-port) network.

We can of course construct networks with two or more ports; an example of a two-port network is shown below:

Since this circuit is linear, the relationship between all voltages and currents can likewise be expressed as linear operators, e.g.:

$$
\mathcal{L}_{21}\left[v_{1}(t)\right]=v_{2}(t) \quad \mathcal{L}_{z 21}\left[i_{1}(t)\right]=v_{2}(t) \quad \mathcal{L}_{z 22}\left[i_{2}(t)\right]=v_{2}(t)
$$

The linear operator is

a convolution integral

Q: Yikes! What would these linear operators for this circuit be? How can we determine them?

A: It turns out that linear operators for all linear circuits can all be expressed in precisely the same form!

For example, the linear operators of a single-port network are:

$$
\begin{aligned}
& v(t)=\mathcal{L}_{z}[i(t)]=\int_{-\infty}^{t} g_{z}\left(t-t^{\prime}\right) i\left(t^{\prime}\right) d t^{\prime} \\
& i(t)=\mathcal{L}_{y}[v(t)]=\int_{-\infty}^{t} g_{y}\left(t-t^{\prime}\right) v\left(t^{\prime}\right) d t^{\prime}
\end{aligned}
$$

In other words, the linear operator of linear circuits can always be expressed as a convolution integral-a convolution with a circuit impulse function $g(t)$.

The impulse response

Q: But just what is this "circuit impulse response"??
A: An impulse response is simply the response of one circuit function (i.e., $i(t)$ or $v(t)$) due to a specific stimulus by another.

That specific stimulus is the impulse function $\delta(t)$.
The impulse function can be defined as:

$$
\delta(t)=\lim _{\tau \rightarrow 0} \frac{1}{\tau} \frac{\sin \left(\frac{\pi t}{\tau}\right)}{\left(\frac{\pi t}{\tau}\right)}
$$

Such that is has the following two properties:

1. $\delta(t)=0$ for $t \neq 0$
2. $\int_{-\infty}^{\infty} \delta(t) d t=1.0$

We can define all sorts

of impulse responses

The impulse responses of the one-port example are therefore defined as:

and: $\left.\quad g_{z}(t) \doteq v(t)\right\|_{i(t)=\delta(t)}$
$\qquad\left.g_{y}(t) \doteq i(t)\right\|_{v(t)=\delta(t)}$
\qquadMeaning simply that $g_{z}(t)$ is equal to the voltage function $v(t)$ when the circuit is "thumped" with a impulse current (i.e., $i(t)=\delta(t)$, and $g_{y}(t)$ is equal to the current $i(t)$ when

We can make convolution integrals simple!

Similarly, the relationship between the input and the output of a two-port network can be expressed as:
where:

$$
v_{2}(t)=\mathcal{L}_{21}\left[v_{1}(t)\right]=\int_{-\infty}^{t} g\left(t-t^{\prime}\right) v_{1}\left(t^{\prime}\right) d t^{\prime}
$$

Note that the circuit impulse response must be causal (nothing can occur at the output until something occurs at the input), so that:

$$
g(t)=0 \text { for } t<0
$$

Q: Yikes! I recall evaluating convolution integrals to be messy, difficult and stressful. Surely there is an easier way to describe linear circuits!?!

A: Nope! The convolution integral is all there is.
However, we can use our linear systems theory toolbox to greatly simplify the evaluation of a convolution integral!

