Linear Circuit Elements

Most microwave devices can be described or modeled in terms of the three standard circuit elements:

For the purposes of circuit analysis, each of these three elements are defined in terms of the mathematical relationship between the difference in electric potential $v(t)$ between the two terminals of the device (i.e., the voltage across the device), and the current $i(t)$ flowing through the device.

We find that for these three circuit elements, the relationship between $v(t)$ and $i(t)$ can be expressed as a linear operator!

$$
\begin{aligned}
& \mathcal{L}_{\sum}^{R}\left[v_{R}(t)\right]=i_{R}(t)=\frac{v_{R}(t)}{R} \\
& \mathcal{L}_{z}^{R}\left[i_{R}(t)\right]=v_{R}(t)=R i_{R}(t)
\end{aligned}
$$

Since the circuit behavior of these devices can be expressed with linear operators, these devices are referred to as linear circuit elements.

Q: Well, that's simple enough, but what about an element formed from a composite of these fundamental elements?

For example, for example, how are $v(t)$ and $i(t)$ related in the circuit below??

$$
\mathcal{L}_{\mathcal{Z}}[i(t)]=v(t)=? ? ?
$$

A: It turns out that any circuit constructed entirely with linear circuit elements is likewise a linear system (i.e., a linear circuit).

As a result, we know that that there must be some linear operator that relates $v(t)$ and $i(t)$ in your example!

$$
\mathcal{L}_{\mathcal{Z}}[i(t)]=v(t)
$$

The circuit above provides a good example of a single-port (a.k.a. one-port) network.

We can of course construct networks with two or more ports: an example of a two-port network is shown below:

Since this circuit is linear, the relationship between all voltages and currents can likewise be expressed as linear operators, e.g.:

$$
\begin{aligned}
& \mathcal{L}_{21}\left[v_{1}(t)\right]=v_{2}(t) \\
& \mathcal{L}_{z 21}\left[i_{1}(t)\right]=v_{2}(t) \\
& \mathcal{L}_{z 22}\left[i_{2}(t)\right]=v_{2}(t)
\end{aligned}
$$

Q: Yikes! What would these linear operators for this circuit be? How can we determine them?

A: It turns out that linear operators for all linear circuits can all be expressed in precisely the same form! For example, the linear operators of a single-port network are:

$$
\begin{aligned}
& v(t)=\mathcal{L}_{z}[i(t)]=\int_{-\infty}^{t} g_{z}\left(t-t^{\prime}\right) i\left(t^{\prime}\right) d t^{\prime} \\
& i(t)=\mathcal{L}_{y}[v(t)]=\int_{-\infty}^{t} g_{y}\left(t-t^{\prime}\right) v\left(t^{\prime}\right) d t^{\prime}
\end{aligned}
$$

In other words, the linear operator of linear circuits can always be expressed as a convolution integral-a convolution with a circuit impulse function $g(t)$.

Q: But just what is this "circuit impulse response"??

A: An impulse response is simply the response of one circuit function (i.e., $i(t)$ or $v(t)$) due to a specific stimulus by another.

That specific stimulus is the impulse function $\delta(t)$.

The impulse function can be defined as:

$$
\delta(t)=\lim _{\tau \rightarrow 0} \frac{1}{\tau} \frac{\sin \left(\frac{\pi t}{\tau}\right)}{\left(\frac{\pi t}{\tau}\right)}
$$

Such that is has the following two properties:

$$
\text { 1. } \delta(t)=0 \text { for } t \neq 0
$$

2. $\int_{-\infty}^{\infty} \delta(t) d t=1.0$

The impulse responses of the one-port example are therefore defined as:

$$
\left.g_{\mathcal{Z}}(t) \doteq v(t)\right|_{i(t)=\delta(t)}
$$

and:

$$
\left.g_{y}(t) \doteq i(t)\right|_{v(t)=\delta(t)}
$$

Meaning simply that $g_{z}(t)$ is equal to the voltage function $v(t)$ when the circuit is "thumped" with a impulse current (i.e., $i(t)=\delta(t)$), and $g_{y}(t)$ is equal to the current $i(t)$ when the circuit is "thumped" with a impulse voltage (i.e., $v(t)=\delta(t)$).

Similarly, the relationship between the input and the output of a two-port network can be expressed as:

$$
v_{2}(t)=\mathcal{L}_{21}\left[v_{1}(t)\right]=\int_{-\infty}^{t} g\left(t-t^{\prime}\right) v_{1}\left(t^{\prime}\right) d t^{\prime}
$$

where:

$$
\left.g(t) \doteq v_{2}(t)\right|_{v_{1}(t)=\delta(t)}
$$

Note that the circuit impulse response must be causal (nothing can occur at the output until something occurs at the input), so that:

$$
g(t)=0 \text { for } t<0
$$

Q: Yikes! I recall evaluating convolution integrals to be messy, difficult and stressful. Surely there is an easier way to describe linear circuits!?!

A: Nope! The convolution integral is all there is. However, we can use our linear systems theory toolbox to greatly simplify the evaluation of a convolution integral!

