Linear Circuits

Many analog devices and circuits are linear (or approximately so).
Let's make sure that we understand what this term means, as if a circuit is linear, we can apply a large and helpful mathematical toolbox!

Mathematicians often speak of operators, which is "mathspeak" for any mathematical operation that can be applied to a single element (e.g., value, variable, vector, matrix, or function).

```
.operators, operators, operators!!
```

For example, a function $f(x)$ describes an operation on variable x (i.e., $f(x)$ is operator on X). E.G.:

$$
f(y)=y^{2}-3 \quad g(t)=2 t \quad y(x)=|x|
$$

Functions can be operated on

Moreover, we find that functions can likewise be operated on!
For example, integration and differentiation are likewise mathematical operations-operators that operate on functions. E.G.,:

$$
\int f(y) d y \quad \frac{d g(t)}{d t} \quad \int_{-\infty}^{\infty}|y(x)| d x
$$

A special and very important class of operators are linear operators.

Linear operators are denoted as $\mathcal{L}[y]$, where:

* \mathcal{L} symbolically denotes the mathematical operation:
* And y denotes the element (e.g., function, variable, vector) being operated on.

We call this linear superpostion

A linear operator is any operator that satisfies the following two statements for any and all y :

1. $\mathcal{L}\left[y_{1}+y_{2}\right]=\mathcal{L}\left[y_{1}\right]+\mathcal{L}\left[y_{2}\right]$
2. $\mathcal{L}[a y]=a \mathcal{L}[y]$, where a is any constant.

From these two statements we can likewise conclude that a linear operator has the property:

$$
\mathcal{L}\left[a y_{1}+b y_{2}\right]=a \mathcal{L}\left[y_{1}\right]+b \mathcal{L}\left[y_{2}\right]
$$

where both a and b are constants.

Essentially, a linear operator has the property that any weighted sum of solutions is also a solution!

An example of a linear function

For example, consider the function:
$\mathcal{L}[t]=g(t)=2 t$

At $t=1$:

$$
g(t=1)=2(1)=2
$$

and at $t=2$:

$$
g(t=2)=2(2)=4
$$

Now at $t=1+2=3$ we find:

$$
\begin{aligned}
g(1+2) & =2(3) \\
& =6 \\
& =2+4 \\
& =g(1)+g(2)
\end{aligned}
$$

See, it works like it's suppose to!

More generally, we find that:

$$
\begin{aligned}
g\left(t_{1}+t_{2}\right) & =2\left(t_{1}+t_{2}\right) \\
& =2 t_{1}+2 t_{2} \\
& =g\left(t_{1}\right)+g\left(t_{2}\right) \\
g(a t) & =2 a t \\
& =a 2 t \\
& =a g(t)
\end{aligned}
$$

and

Thus, we conclude that the function $g(t)=2 t$ is indeed a linear function!

Surely this is linear

Now consider this function:

$$
y(x)=m x+b
$$

Q: But that's the equation of a line! That must be a linear function, right?

A: I'm not sure-let's find out!
We find that:

$$
\begin{aligned}
y(a x) & =m(a x)+b \\
& =a m x+b
\end{aligned}
$$

but:

$$
\begin{aligned}
a y(x) & =a(m x+b) \\
& =a m x+a b
\end{aligned}
$$

therefore:

$$
y(a x) \neq a y(x)!!!
$$

It's not; and stop calling me Shirley

Likewise:

$$
\begin{aligned}
y\left(x_{1}+x_{2}\right) & =m\left(x_{1}+x_{2}\right)+b \\
& =m x_{1}+m x_{2}+b
\end{aligned}
$$

but:

$$
\begin{aligned}
y\left(x_{1}\right)+y\left(x_{2}\right) & =\left(m x_{1}+b\right)+\left(m x_{2}+b\right) \\
& =m x_{1}+m x_{2}+2 b
\end{aligned}
$$

therefore:

$$
y\left(x_{1}+x_{2}\right) \neq y\left(x_{1}\right)+y\left(x_{2}\right)!!!
$$

The equation of a line is not a linear function!

Moreover, you can show that the functions:

$$
f(y)=y^{2}-3 \quad y(x)=|x|
$$

are likewise non-linear.

The derivative is a linear operator

Remember, linear operators need not be functions.
Consider the derivative operator, which operates on functions.

Note that:

$$
\frac{d}{d x}[f(x)+g(x)]=\frac{d f(x)}{d x}+\frac{d g(x)}{d x}
$$

and also:

$$
\frac{d}{d x}[a f(x)]=a \frac{d f(x)}{d x}
$$

We thus can conclude that the derivative operation is a linear operator on function $f(x)$:

$$
\frac{d f(x)}{d x}=\mathcal{L}[f(x)]
$$

Most operators are not linear

You can likewise show that the integration operation is likewise a linear operator:

$$
\int f(y) d y=\mathcal{L}[f(y)]
$$

But, you will find that operations such as:

$$
\frac{d g^{2}(t)}{d t} \quad \int_{-\infty}^{\infty}|y(x)| d x
$$

are not linear operators (i.e., they are non-linear operators).
We find that most mathematical operations are in fact non-linear!
Linear operators are thus form a small subset of all possible mathematical operations.

Linear operators allow for "easy" evaluation

Q: Yikes! If linear operators are so rare, we are we wasting our time learning about them??

A: Two reasons!

Reason 1: In electrical engineering, the behavior of most of our fundamental circuit elements are described by linear operators-linear operations are prevalent in circuit analysis!

Reason 2: To our great relief, the two characteristics of linear operators allow us to perform these mathematical operations with relative ease!

