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Non-Linear Behavior

of Amplifiers

Note that the ideal amplifier transfer function:


[image: image1.wmf](

)

(

)

oc

outvoi

vtAvt

=


is an equation of a line (with slope = Avo and y -intercept = 0).
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The output voltage is limited
This ideal transfer function implies that the output voltage can be very large, provided that the gain Avo and the input voltage vin  are large.

However, we find in a “real” amplifier that there are limits on how large the output voltage can become.  

The transfer function of an amplifier is more accurately expressed as:
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Amplifier saturation
This expression is shown graphically as:
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This expression  (and graph) shows that electronic amplifiers have a maximum and minimum output voltage (L+ and L-).  
If the input voltage is either too large or too small (too negative), then the amplifier output voltage will be equal to either L+ or L- .

If vout = L+ or vout =L- ,  we say the amplifier is in saturation (or compression).

Make sure the input isn’t too large!
Amplifier saturation occurs when the input voltage is greater than:
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or when the input voltage is less than:
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Often, we find that these voltage limits are symmetric, i.e.:
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For example, the output limits of an amplifier might be L+ = 15 V and L- = -15 V.

However, we find that these limits are also often  asymmetric (e.g., L+ = +15 V and L- = +5 V).

Saturation: Who really cares?
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A distortion free example
For example, consider a case where the input to an amplifier is a triangle wave:
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 for all time t, the output signal will be within the limits L+ and L- for all time t, and thus the amplifier output will be vout (t) = Avo vin (t):

The input is too darn big!
Consider now the case where the input signal is much larger, such that 
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 for some time t (e.g., the input triangle wave exceeds the voltage limits 
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 some of the time):
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Palpable agony
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Note that this output signal is not a triangle wave!  

For time t where 
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, the value 
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 is greater than L+ and less than L-, respectively.  
Thus, the output voltage is limited to 
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 for these times.

As a result, we find that output 
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 —the output signal is distorted!

“Soft” Saturation
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In reality, the saturation voltages 
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 are not so precisely defined.  
The transition from the linear amplifier region to the saturation region is gradual, and cannot be unambiguously defined at a precise point.
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Yet another problem: DC offset
Now for another non-linear problem!

We will find that many amplifiers exhibit a DC offset (i.e., a DC bias) at their output.  
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How do we define gain?
The output of these amplifiers can be expressed as:
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where A  and Voff  are constants.  
It is evident that if the input is zero, the output voltage will not be (zero, that is)!
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Calculus: is there anything it can’t do?
A: The gain of any amplifier can be defined more precisely using the derivative operator:
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Thus, for an amplifier with an output DC offset, we find the voltage gain to be:
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In other words, the gain of an amplifier is determined by the slope of the transfer function!

This sort of makes sense!
For an amplifier with no DC offset (i.e., 
[image: image20.wmf]ovo

i

vAv

=

), it is easy to see that the gain is likewise determined from this definition:
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Both problems collide
OK, here’s another problem.

The derivative of the transfer curve for real amplifiers will not be a constant.  
We find that the gain of a amplifier will often be dependent on the input voltage!

The main reason for this is amplifier saturation.  
Consider again the transfer function of an amplifier that saturates:
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Gain is a function of vin
We find the gain of this amplifier by taking the derivative with respect to vin :
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Graphically, this result is:
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You’ll see this transfer function again!
Thus, the gain of this amplifier when in saturation is zero. A change in the input voltage will result in no change on the output—the output voltage will simply be 
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Again, the transition into saturation is gradual for real amplifiers.  
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In fact, we will find that many of the amplifiers studied in this class have a transfer function that looks something like this(
We will find that the voltage gain of many amplifiers is dependent on the input voltage.  
Thus, a DC bias at the input of the amplifier is often required to maximize the amplifier gain.
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This is precisely the situation about which I earlier expressed caution.  





We now must experience the palpable agony of signal distortion!
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A:  Absolutely!  If an amplifier saturates—even momentarily—the unavoidable result will be a distorted output signal.
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Q:  Why do we care if an amplifier saturates? Does it cause any problems, or otherwise result in  performance degradation??
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Q: Yikes! How do we determine the gain of such an amplifier? 
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then what is:
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The ratio of the output voltage to input voltage is not a constant!
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Hey, hey! This definition makes sense if you think about it—gain is the change of the output voltage with respect to a change at the input.  





For example, of small change � EMBED Equation.DSMT4  ��� at the input will result in a change of � EMBED Equation.DSMT4  ��� at the output.  





If Avo is large, this change at the output will be large! 
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