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Signal Expansions
Q: How is performing a linear operation easier than performing a non-linear one??
A:  The “secret” lies is the result: 
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Note here that the linear operation performed on a relatively complex element 
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 can be determined immediately from the result of operating on the “simple” elements 
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 and 
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To see how this might work, let’s consider some arbitrary function of time 
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, a function that exists over some finite amount of time T  (i.e., 
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Say we wish to perform some linear operation on this function:
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Depending on the difficulty of the operation 
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, and/or the complexity of the function 
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, directly performing this operation could be very painful (i.e., approaching impossible).
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Instead, we find that we can often expand a very complex and stressful function in the following way:
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where the values 
[image: image11.wmf]n

a

 are constants (i.e., coefficients), and the functions 
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 are known as basis functions.

For example, we could choose the basis functions:
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Resulting in a polynomial of variable t:  
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This signal expansion is of course know as the Taylor Series expansion.  However, there are many other useful expansions (i.e., many other useful basis 
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· The key thing is that the basis functions 
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 are independent of the function 
[image: image17.wmf](

)

vt

.  That is to say, the basis functions are selected by the engineer (i.e., you) doing the analysis. 

· The set of selected basis functions form what’s known as a basis. With this basis we can analyze the function 
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· The result of this analysis provides the coefficients 
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 of the signal expansion.  Thus, the coefficients are directly dependent on the form of function 
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 (as well as the basis used for the analysis).  As a result, the set of coefficients 
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 completely describe the function 
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Q:  I don’t see why this “expansion” of function of 
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 is helpful, it just looks like a lot more work to me.

A:  Consider what happens when we wish to perform a linear operation on this function:
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Look what happened! Instead of performing the linear operation on the arbitrary and difficult function 
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, we can apply the operation to each of the individual basis functions 
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Q:  And that’s supposed to be easier??

A:   It depends on the linear operation and on the basis functions 
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.  Hopefully, the operation 
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 is simple and straightforward.  Ideally, the solution to 
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 is already known!
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Q:  Oh yeah, like I’m going to get so lucky.  I’m sure in all my circuit analysis problems evaluating 
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 will be long, frustrating, and painful.
A: Remember, you get to choose the basis over which the function 
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 is analyzed.  A smart engineer will choose a basis for which the operations 
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 are simple and straightforward!

Q:  But I’m still confused.  How do I choose what basis 
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 to use, and how do I analyze the function 
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 to determine the coefficients 
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A:  Perhaps an example would help.

Among the most popular basis is this one:
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and:
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So therefore:
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The astute among you will recognize this signal expansion as the Fourier Series!

Q:  Yes, just why is Fourier analysis so prevalent? 

A:  The answer reveals itself when we apply a linear operator to the signal expansion:
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Note then that we must simply evaluate:
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for all n.

We will find that performing almost any linear operation 
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 on basis functions of this type to be exceeding simple (more on this later)!
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