## Signal Expansions

Q: How is performing a linear operation easier than performing a non-linear one??

A: The "secret" lies is the result:

$$
\mathcal{L}\left[a y_{1}+b y_{2}\right]=a \mathcal{L}\left[y_{1}\right]+b \mathcal{L}\left[y_{2}\right]
$$

Note here that the linear operation performed on a relatively complex element $a y_{1}+b y_{2}$ can be determined immediately from the result of operating on the "simple" elements $y_{1}$ and $y_{2}$.
To see how this might work, let's consider some arbitrary function of time $v(t)$, a function that exists over some finite amount of time $T$ (i.e, $v(t)=0$ for $t<0$ and $t>T$ ).

Say we wish to perform some linear operation on this function:

$$
\mathcal{L}[v(t)]=? ?
$$



Depending on the difficulty of the operation $\mathcal{L}$, and/or the complexity of the function $v(t)$, directly performing this operation could be very painful (i.e., approaching impossible).

Instead, we find that we can often expand a very complex and stressful function in the following way:
$v(t)=a_{0} \psi_{0}(t)+a_{1} \psi_{1}(t)+a_{2} \psi_{2}(t)+\cdots=\sum_{n=-\infty}^{\infty} a_{n} \psi_{n}(t)$
where the values $a_{n}$ are constants (i.e.,
coefficients), and the functions $\psi_{n}(t)$ are known as basis functions.

For example, we could choose the basis functions:

$$
\psi_{n}(t)=t^{n} \text { for } n \geq 0
$$

Resulting in a polynomial of variable $t$.

$$
v(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+\cdots=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

This signal expansion is of course know as the Taylor Series expansion. However, there are many other useful expansions (i.e., many other useful basis $\psi_{n}(t)$ ).

* The key thing is that the basis functions $\psi_{n}(t)$ are independent of the function $v(t)$. That is to say, the basis functions are selected by the engineer (i.e., you) doing the analysis.
* The set of selected basis functions form what's known as a basis. With this basis we can analyze the function $v(t)$.
* The result of this analysis provides the coefficients $a_{n}$ of the signal expansion. Thus, the coefficients are directly dependent on the form of function $v(t)$ (as well as the basis used for the analysis). As a result, the set of coefficients $\left\{a_{1}, a_{2}, a_{3}, \cdots\right\}$ completely describe the function $v(t)$ !

Q: I don't see why this "expansion" of function of $v(t)$ is helpful, it just looks like a lot more work to me.

A: Consider what happens when we wish to perform a linear operation on this function:

$$
\mathcal{L}[v(t)]=\mathcal{L}\left[\sum_{n=-\infty}^{\infty} a_{n} \psi_{n}(t)\right]=\sum_{n=-\infty}^{\infty} a_{n} \mathcal{L}\left[\psi_{n}(t)\right]
$$

Look what happened! Instead of performing the linear operation on the arbitrary and difficult function $v(t)$, we can apply the operation to each of the individual basis functions $\psi_{n}(t)$.

Q: And that's supposed to be easier??

A: It depends on the linear operation and on the basis functions $\psi_{n}(t)$. Hopefully, the operation $\mathcal{L}\left[\psi_{n}(t)\right]$ is simple
and straightforward. Ideally, the solution to $\mathcal{L}\left[\psi_{n}(t)\right]$ is already known!

Q: Oh yeah, like I'm going to get so lucky. I'm sure in all my circuit analysis problems evaluating $\mathcal{L}\left[\psi_{n}(t)\right]$ will be long, frustrating, and painful.


A: Remember, you get to choose the basis over which the function $v(t)$ is analyzed. A smart engineer will choose a basis for which the operations $\mathcal{L}\left[\psi_{n}(t)\right]$ are simple and straightforward!

Q: But I'm still confused. How do I choose what basis $\psi_{n}(t)$ to use, and how do I analyze the function $v(t)$ to determine the coefficients $a_{n}$ ??

A: Perhaps an example would help.
Among the most popular basis is this one:
and:

$$
\begin{gathered}
\psi_{n}= \begin{cases}e^{j\left(\frac{2 \pi n}{T}\right) t} & 0 \leq t \leq T \\
0 & t \leq 0, t \geq T\end{cases} \\
a_{n}=\frac{1}{T} \int_{0}^{T} v(t) \psi_{n}^{*}(t) d t=\frac{1}{T} \int_{0}^{T} v(t) e^{-j\left(\frac{2 \pi n}{T}\right) t} d t
\end{gathered}
$$

So therefore:

$$
v(t)=\sum_{n=-\infty}^{\infty} a_{n} e^{j\left(\frac{2 \pi n}{T}\right) t} \quad \text { for } 0 \leq t \leq T
$$

The astute among you will recognize this signal expansion as the Fourier Series!

Q: Yes, just why is Fourier analysis so prevalent?

A: The answer reveals itself when we apply a linear operator to the signal expansion:

$$
\mathcal{L}[v(t)]=\mathcal{L}\left[\sum_{n=-\infty}^{\infty} a_{n} e^{-j\left(\frac{2 \pi n}{T}\right) t}\right]=\sum_{n=-\infty}^{\infty} a_{n} \mathcal{L}\left[e^{-j\left(\frac{2 \pi n}{T}\right) t}\right]
$$

Note then that we must simply evaluate:
for all $n$.

this type to be exceeding simple (more on this later)!

