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The Eigen Values 
of Linear Circuits 

 
Recall the linear operators that define a capacitor: 
 

( ) ( ) ( )

( ) ( ) ( )1

C C
C C

t
C

C C C

d v tv t i t C
d t

i t v t i t dt
C −∞
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We now know that the Eigen function of these linear, time-invariant operators—
like all linear, time-invariant operators—is [ ]exp j tω . 
 
The question now is: what is the Eigen value of each of these operators?   
 
It is this value that defines the physical behavior of a given capacitor! 
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The operator is linear 
 
For ( ) [ ]expCv t j tω= , we find: 
 

( ) ( )

( )

C
C C

j t

j t

i t v t
d eC

d t
j C e

ω

ωω

= ⎡ ⎤⎣ ⎦

=

=

YL

 

 
Just as we expected, the Eigen function [ ]exp j tω  “survives” the linear 
operation unscathed—the current function ( )i t  has precisely the same form as 
the voltage function ( ) [ ]expv t j tω= . 
 
The only difference between the current and voltage is the multiplication of 
the Eigen value, denoted as ( )CG ωY . 
 

( ) ( ) ( )j t j tC C
Ci t v t e G eY YL ω ωω⎡ ⎤= = =⎣ ⎦  
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The Eigen value of a capacitor 
 
Since we just determined that for this case: 
 

( ) ( ) j t
Ci t j C e ωω=  

 
it is evident that the Eigen value of the linear operation: 
 

( ) ( ) ( )C d v ti t v t C
d t

= =⎡ ⎤⎣ ⎦YL  

is: 
( ) 2jCG j C C e π
ω ω ω= =Y   !!! 
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Let’s now consider real-valued functions 
 
So for example, if:  
 

( ) ( )
( ){ }
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V e eϕ ω
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=
 

 
we will find that: 
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Therefore: 
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Remember what the complex value means 
 
Hopefully, this example again emphasizes that these real-valued sinusoidal 
functions can be completely expressed in terms of complex values.   
 
For example, the complex value: 
 

j
mCV V e ϕ=  
 

means that the magnitude of the sinusoidal voltage is mCV V= , and its relative 
phase is CV ϕ∠ = .  The complex value: 
 

( ) 2jC
C C CI G V C e VY

π
ω ω⎛ ⎞= = ⎜ ⎟

⎝ ⎠
 

 
likewise means that the magnitude of the sinusoidal current is: 
 

( ) ( )C C
C C C mI G V G V C VY Yω ω ω= = =  

 
And the relative phase of the sinusoidal current is: 
 

( ) 2
C

C CI G VY
πω ϕ∠ = ∠ + ∠ = +  
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Now find the voltage from the current 
 
We can thus summarize the behavior of a 
capacitor with the simple complex equation: 
 

( )
2

C C

j
C

I j C V

C e V
π

ω

ω

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 
 
Now let’s return to the second of the two linear operators that describe a 
capacitor: 

( ) ( ) ( )1 t
C

C C Cv t i t i t dt
C −∞

′ ′= =⎡ ⎤⎣ ⎦ ∫ZL  

 
Now, if the capacitor current is the Eigen function ( ) expC t j ti ω= ⎡ ⎤⎣ ⎦ , we find: 
 

1 1t
j t j t j tC e e dt e

C j CZL
ω ω ω

ω
′

−∞

⎛ ⎞⎡ ⎤ ′= = ⎜ ⎟⎣ ⎦ ⎝ ⎠
∫  

 
where we assume ( ) 0i t = −∞ = . 
 

( )C CI j C Vω=  

CV

+

−

 C 
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The Eigen value of this linear operator 
 
Thus, we can conclude that: 
 

( ) 1j t j t j tC Ce G e e
j C

ω ω ωω
ω

⎛ ⎞
⎡ ⎤ = = ⎜ ⎟⎣ ⎦

⎝ ⎠
Z ZL  

 
Hopefully, it is evident that the Eigen value of this linear operator is:  
 

( ) ( )3
21 1 jC jG e

j C C C
π

ω
ω ω ω

−
= = =Z  

 
And so:   

1
C CV I

j Cω
⎛ ⎞

= ⎜ ⎟
⎝ ⎠
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Impedance is simply an Eigen value! 
 
Q:  Wait a second! Isn’t this essentially the same result as the one derived for 
operator C

YL ?? 
 
A:  It’s precisely the same!  For both operators we find: 
 

1C

C

V
I j Cω

=  

 
This should not be surprising, as both operators C

YL  and C
ZL  relate the current 

through and voltage across the same device (a capacitor). 
 

The ratio of complex voltage to complex current is of course referred to as the 
complex device impedance Z. 
 

VZ
I

 

 
An impedance can be determined for any linear, time-invariant one-port 
network—but only for linear, time-invariant one-port networks! 
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Know what impedance tells you! 
 
Generally speaking, impedance is a function of frequency.  In fact, the 
impedance of a one-port network is simply the Eigen value ( )G ωZ  of the linear 
operator ZL : 
 
 

V Z I=                                               
( ) ( )

( )

i t v t

Z G ω

=⎡ ⎤⎣ ⎦

=

Z

Z

L

 

 
 
 
Note that impedance is a complex value that provides us with two things: 
 
1.  The ratio of the magnitudes of the sinusoidal voltage and current: 

VZ
I

=  

 
2.  The difference in phase between the sinusoidal voltage and current: 

Z V I∠ = ∠ − ∠  
 

I  

V

+

−

 Z 
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Admittance 
 
Q:  What about the linear operator: 
 

( ) ( )v t i t=⎡ ⎤⎣ ⎦YL   ?? 
 

A:  Hopefully it is now evident to you that: 
 

( )
( )
1 1G

G Z
ω

ω
= =Y

Z

 

 
The inverse of impedance is admittance Y: 
 

1 IY
Z V

=  
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Inductors and resistors 
 
Now, returning to the other two linear circuit elements, we find (and you can 
verify) that for resistors: 
 

( ) ( ) ( )

( ) ( ) ( )

1R R
R R

R R
R R

v t i t G R

i t v t G R

ω

ω

= ⇒ =⎡ ⎤⎣ ⎦

= ⇒ =⎡ ⎤⎣ ⎦

Y Y

Z Z

L

L

 

and for inductors: 
 

( ) ( ) ( )

( ) ( ) ( )

1L L
L L

L L
L L

v t i t G
j L

i t v t G j L

ω
ω

ω ω

= ⇒ =⎡ ⎤⎣ ⎦

= ⇒ =⎡ ⎤⎣ ⎦

Y Y

Z Z

L

L

 

 
meaning: 
 

01 j
R

R
Z R R e

Y
= = =         and       ( )21 j

L
L

Z j L L e
Y

π
ω ω= = =  
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All the rules of circuit theory apply to 
complex currents and voltages too 

 
Now, note that the relationship  

 
VZ
I

=  

 
forms a complex “Ohm’s Law” with regard to complex currents and voltages.   
 
Additionally, ICBST (It Can Be Shown That) Kirchoff’s Laws are likewise valid 
for complex currents and voltages: 
 

0 0n n
n n

I V= =∑ ∑  

 
where of course the summation represents complex addition. 
 
As a result, the impedance (i.e., the Eigen value) of any one-port device can be 
determined by simply applying a basic knowledge of linear circuit analysis! 
 



 
  

 

1/25/2011 The Eigen Spectrum of linear circuits lecture.doc 13/15 

Jim Stiles The Univ. of Kansas Dept. of EECS 

We can determine Eigen values  
without knowing the impulse response! 

 
Returning to the example: 
 
 

VZ
I

=  

 
 
 
And thus using out basic circuits knowledge, we find: 
 

1
j CR LCZ Z Z Z R j Lω ω= + = +  

 
Thus, the Eigen value of the linear operator: 
 

( ) ( )i t v t=⎡ ⎤⎣ ⎦ZL  
 
For this one-port network is: 
 

( ) 1
j CG R j Lωω ω= +Z  

L 

I  

V

+

−

 R 

C 
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No need for convolution! 
 
Look what we did! We were able to determine ( )G ωZ  without explicitly 
determining impulse response ( )g tZ , or having to perform any integrations! 
 
Now, if we actually need to determine the voltage function ( )v t  created by 
some arbitrary current function ( )i t , we integrate: 
 

( ) ( ) ( )

( ) ( )1

1
2
1

2

j t

j t
j C

v t G I e d

R j L I e d

ω

ω
ω

ω ω ω
π

ω ω ω
π

+∞

−∞

+∞

−∞

=

= +

∫

∫

Z

 

where: 

( ) ( ) j tI i t e dtωω
+∞

−

−∞

= ∫  

 
Otherwise, if our current function is time-harmonic (i.e., sinusoidal with 
frequency ω ), we can simply relate complex current I  and complex voltage V  
with the equation: 

( )1
j C

V Z I
R j L Iω ω

=

= +
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See how easy this is? 
 
Similarly, for our two-port example, 
we can likewise determine from basic 
circuit theory the Eigen value of 
linear operator: 
 

( ) ( )21 1 2v t v t=⎡ ⎤⎣ ⎦L  
 
 
 

is:     ( )21 1
L R

L RC

j L RZ ZG
Z Z Z j L R

j C

ω
ω

ω
ω

= =
+ +

 

 
so that:      ( )2 21 1V G Vω=  
 

or more generally:   ( ) ( ) ( )2 21 1
1

2
j tv t G V e dωω ω ω

π

+∞

−∞

= ∫  

 

where:      ( ) ( )1 1
j tV v t e dtωω

+∞
−

−∞

= ∫  

 

L 
1V

+

−

 R 

C 

2V

+

−

 


