The Eigen Values
of Linear Circuits

Recall the linear operators that define a capacitor:
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We now know that the Eigen function of these linear, time-invariant operators—
like all linear, time-invariant operators—isexp| jot].

The question now is: what is the Eigen value of each of these operators?

It is this value that defines the physical behavior of a given capacitor!



The operator _is linear

For v () =exp[jwt], we find:
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Just as we expected, the Eigen function exp[ jot| “survives” the linear

operation unscathed—the current function /(7) has precisely the same form as
the voltage function v (t) = exp[ jot].

The only difference between the current and voltage is the multiplication of
the Eigen value, denoted as & (o).
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The Eigen value of a capacitor

Since we just determined that for this case:
i(t)=(joC) e
it is evident that the Eigen value of the linear operation:
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Let's now consider real-valued functions

So for example, if:
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we will find that:

Therefore:
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Remember what the complex value means

Hopefully, this example again emphasizes that these real-valued sinusoidal
functions can be completely expressed in terms of complex values.

For example, the complex value:
V. = Vmej‘”

means that the magnitude of the sinusoidal voltage is || =V/;,, and its relative
phase is £V, =¢. The complex value:
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likewise means that the magnitude of the sinusoidal current is:
Z|=|& ()| = | (o) o] = e v,

And the relative phase of the sinusoidal current is:

LI, = 265(0)+ 2V, =T+



Now find the voltage from the current

We can thus summarize the behavior of a ICZE (j “’C)Vc
capacitor with the simple complex equation: Il
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Now let's return to the second of the two linear operators that describe a
capacitor:
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Now, if the capacitor current is the Eigen function /. (#) = exp| jot |, we find:
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where we assume 7 (# = —) =0.



The Eigen value of this linear operator

Thus, we can conclude that:
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Hopefully, it is evident that the Eigen value of this linear operator is:
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And so:



Impedance is simply an Eigen valuel

Q: Wait a second! Isn't this essentially the same result as the one derived for
operatorLs, 2?

A: It's precisely the same! For both operators we find:
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This should not be surprising, as both operators L5, and £; relate the current
through and voltage across the same device (a capacitor).

The ratio of complex voltage to complex current is of course referred to as the
complex device impedance Z

Z=2
T

An impedance can be determined for any linear, tfime-invariant one-port
network—but only for linear, fime-invariant one-port networks!



Know what impedance tells youl

Generally speaking, impedance is a function of frequency. In fact, the
impedance of a one-port network is simply the Eigen value &,(®) of the linear

operator L,:
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Note that impedance is a complex value that provides us with two things:

1. The ratio of the magnitudes of the sinusoidal voltage and current:
z- 1
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2. The difference in phase between the sinusoidal voltage and current:
£Z=/V-ZI



Admittance

Q: What about the linear operator:
L,[v()]=i(t) 2

A: Hopefully it is now evident to you that:

The inverse of impedance is admittance Y:
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Inductors and resistors

Now, returning to the other two linear circuit elements, we find (and you can
verify) that for resistors:

Llve(t) = (1) =& (0)=YR

Lo (1) ]=ve(t) =67 (0)=R
and for inductors:
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meaning:



All the rules of circuit theory apply to
complex currents and voltages too

Now, note that the relationship
z-V
I

forms a complex "Ohm's Law" with regard to complex currents and voltages.

Additionally, ICBST (It Can Be Shown That) Kirchoff's Laws are likewise valid
for complex currents and voltages:
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where of course the summation represents complex addition.

As a result, the impedance (i.e., the Eigen value) of any one-port device can be
determined by simply applying a basic knowledge of linear circuit analysis!



We can determine Eigen values
without knowing the impulse response!

Returning to the example: I, q¢
O
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And thus using out basic circuits knowledge, we find:
Z =2, +2p|Z, = YViuc +R| jool
Thus, the Eigen value of the linear operator:
L[7(1)]=v ()
For this one-port network is:

6.0) = Yue + R jo



No need for convolution!

Look what we did! We were able to determine &,(») without explicitly
determining impulse response g.(1), or having to perform any integrations!

Now, if we actually need to determine the voltage function v (t) created by
some arbitrary current function /(#), we integrate:
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where:

I (w)= T/(f)e-fw"dr

Otherwise, if our current function is time-harmonic (i.e., sinusoidal with
frequency @), we can simply relate complex current I and complex voltage V

with the equation:
V=21
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See how easy this is?

Similarly, for our two-port example,

we can likewise determine from basic o I I q
circuit theory the Eigen value of + +
linear operator:
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where: W(w)=[w(t)e’"dt



