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The Eigen Values
of Linear Circuits

Recall the linear operators that define a capacitor:
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We now know that the eigen function of these linear, time-invariant operators—like all linear, time-invariant operartors—is 
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The question now is, what is the eigen value of each of these operators?  It is this value that defines the physical behavior of a given capacitor!

For 
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Just as we expected, the eigen function 
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 “survives” the linear operation unscathed—the current function 
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 has precisely the same form as the voltage function 
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The only difference between the current and voltage is the multiplication of the eigen value, denoted as 
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Since we just determined that for this case:
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it is evident that the eigen value of the linear operation:
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is:
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So for example, if: 
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we will find that:
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Therefore:
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Hopefully, this example again emphasizes that these real-valued sinusoidal functions can be completely expressed in terms of complex values.  For example, the complex value:
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means that the magnitude of the sinusoidal voltage is 
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, and its relative phase is 
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The complex value:
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likewise means that the magnitude of the sinusoidal current is:
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And the relative phase of the sinusoidal current is:
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We can thus summarize the behavior of a capacitor with the simple complex equation:


[image: image22.wmf](

)

(

)

2

CC

j

C

IjCV

CeV

p

w

w

=

=


Now let’s return to the second of the two linear operators that describe a capacitor:
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Now, if the capacitor current is the eigen function 
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, we find:
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where we assume 
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Thus, we can conclude that:
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Hopefully, it is evident that the eigen value of this linear operator is: 
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And so:  
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Q:  Wait a second! Isn’t this essentially the same result as the one derived for operator
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A:  It’s precisely the same!  For both operators we find:
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This should not be surprising, as both operators 
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 and 
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 relate the current through and voltage across the same device (a capacitor).

The ratio of complex voltage to complex current is of course referred to as the complex device impedance Z.
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An impedance can be determined for any linear, time-invariant one-port network—but only for linear, time-invariant one-port networks!
Generally speaking, impedance is a function of frequency.  In fact, the impedance of a one-port network is simply the eigen value 
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Note that impedance is a complex value that provides us with two things:

1.  The ratio of the magnitudes of the sinusoidal voltage and current:
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2.  The difference in phase between the sinusoidal voltage and current:
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Q:  What about the linear operator:
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A:  Hopefully it is now evident to you that:
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The inverse of impedance is admittance Y:
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Now, returning to the other two linear circuit elements, we find (and you can verify) that for resistors:
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and for inductors:
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meaning:
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Now, note that the relationship 
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forms a complex “Ohm’s Law” with regard to complex currents and voltages.  

Additionally, ICBST (It Can Be Shown That) Kirchoff’s Laws are likewise valid for complex currents and voltages:
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where of course the summation represents complex addition.

As a result, the impedance (i.e., the eigen value) of any one-port device can be determined by simply applying a basic knowledge of linear circuit analysis!

Returning to the example:
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And thus using out basic circuits knowledge, we find:
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Thus, the eigen value of the linear operator:
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For this one-port network is:
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Look what we did! We were able to determine 
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 without explicitly determining impulse response 
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Now, if we actually need to determine the voltage function 
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 created by some arbitrary current function 
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, we integrate:
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where:
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Otherwise, if our current function is time-harmonic (i.e., sinusoidal with frequency 
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), we can simply relate complex current I  and complex voltage V  with the equation:
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Similarly, for our two-port example:
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we can likewise determine from basic circuit theory the eigen value of the linear operator:
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is:
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so that:


[image: image64.wmf](

)

2211

VGV

w

=


or more generally:

[image: image65.wmf](

)

(

)

(

)

2211

1

2

jt

vtGVed

w

www

p

+¥

-¥

=

ò


where:
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