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EECS 412 Introduction 
 
Q:  So what’s this class all about?  What is its purpose? 
 
A:  In EECS 312 you learned about: 

 
* Electronic devices (e.g., 

transistors and diodes) 
* How we use transistors to make 

digital devices (e.g., inverters, 
gates, flip-flops, and memory). 

 
 
 
In contrast, EECS 412 will teach 
you how we use transistors to make 
analog devices (e.g., amplifiers, 
filters, summers, integrators, etc.). 
 
 
 

Analog circuits and devices operate on 
analog signals—usually voltage 
signals—that represent a continuous, 
time-varying analog of some physical 
function.  
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For example, the analog voltage signal ( )v t  can represent an audio 
pressure wave (i.e., sound), or the beating of a human heart. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Quite often, an analog device has two ports—an input port and an 
output port: 
 
 
 
 
 
 
 

Two-Port 
Device ( )inv t

+

−

 ( )outv t
+

−

 

( )ini t  ( )outi t  
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A fundamental question in electrical engineering is determining the 
output signal ( )outv t  when the input signal ( )inv t  is known. 
 
This is frequently a difficult question to answer, but it becomes 
significantly easier if the two-port device is constructed of linear, 
time-invariant circuit elements! 

HO: THE LINEAR, TIME-INVARIANT CIRCUIT 
 
Linear circuit behavior would be not at all useful except for the 
unfathomably important concept of signal expansion via basis 
functions! 
 
HO: SIGNAL EXPANSIONS 
 
Linear systems theory is useful for electrical engineers because 
most analog devices and systems are linear (at least 
approximately so!). 

HO: LINEAR CIRCUIT ELEMENTS 
 
The most powerful tool for analyzing linear systems is its Eigen 
function. 
 
HO: THE EIGEN FUNCTION OF LINEAR SYSTEMS 
 
Complex voltages and currents at times cause much head 
scratching; let’s make sure we know what these complex values and 
functions physically mean. 
 
HO: A COMPLEX REPRESENTATION OF SINUSOIDAL FUNCTIONS 
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Signals may not have the explicit form of an Eigen function, but 
our linear systems theory allows us to (relatively) easily analyze 
this case as well. 
 
HO: ANALYSIS OF CIRCUITS DRIVEN BY ARBITRARY FUNCTIONS 
 
If our linear system is a linear circuit, we can apply basic circuit 
analysis to determine all its Eigen values! 
 
HO: THE EIGEN SPECTRUM OF LINEAR CIRCUITS 
 
A more general form of the Fourier Transform is the Laplace 
Transform. 
 
HO: THE EIGEN VALUES OF THE LAPLACE TRANSFORM 
 
The numerical value of frequency ω  has tremendous practical 
ramifications to us EEs. 
 
HO: FREQUENCY BANDS 
 
A set of four Eigen values can completely characterize a two-port 
linear system. 
 
HO: THE IMPEDANCE AND ADMITTANCE MATRIX 
 
A really important linear (sort of) device is the amplifier. 
 
HO: THE AMPLIFIER 
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The two most important parameter of an amplifier is its gain and 
its bandwidth. 
 
HO: AMPLIFIER GAIN AND BANDWIDTH 
 
Amplifier circuits can be quite complex; however, we can use a 
relatively simple equivalent circuit to analyze the result when we 
connect things to them! 
 
HO: CIRCUIT MODELS FOR AMPLIFIERS 
 
One very useful application of the circuit model is to analyze and 
characterize types of amplifiers. 
 
HO: CURRENT AND VOLTAGE AMPLIFIERS 
 
It turns out that amplifiers are only approximately linear.  It is 
important that we understand their non-linear characteristics and 
properties. 
 
HO: NON-LINEAR BEHAVIOR OF AMPLIFIERS 
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Linear Circuits 
 
Many analog devices and circuits are linear (or approximately so).  
  
Let’s make sure that we understand what this term means, as if a circuit 
is linear, we can  apply a large and helpful mathematical toolbox! 
 
 

Mathematicians often speak of operators, which is “mathspeak” 
for any mathematical operation that can be applied to a single 
element (e.g., value, variable, vector, matrix, or function).  

 
 
 
 
For example, a function ( )f x  describes an operation on variable x  (i.e., ( )f x  is 
operator on x ). E.G.: 
 

( ) ( ) ( )2 3 2f y y g t t y x x= − = =  
 

 ...operators, operators, operators!! 
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Functions can be operated on 
 
Moreover, we find that functions can likewise be operated on!   
 
For example, integration and differentiation are likewise mathematical 
operations—operators that operate on functions.  E.G.,: 
 

( ) ( ) ( )d g tf y dy y x dx
dt

∞

−∞
∫ ∫  

 
A special and very important class of operators are linear operators.   

 
 
Linear operators are denoted as [ ]yL , where: 
 

* L  symbolically denotes the mathematical operation; 
 

* And y denotes the element (e.g., function, variable, vector) being 
operated on. 
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We call this linear superpostion 
 
A linear operator is any operator that satisfies the following two statements 
for any and all y : 
 
 

1.   [ ] [ ] [ ]1 2 1 2y y y y+ = +L L L  
 

2.  [ ]a y a y=⎡ ⎤⎣ ⎦L L ,  where a  is any constant. 
 
 

 
From these two statements we can likewise conclude that a linear operator has 
the property: 
 
 

[ ] [ ]1 2 1 2a y b y a y b y+ = +⎡ ⎤⎣ ⎦L L L  
 

 
where both a and b are constants. 
 

Essentially, a linear operator has the property that any weighted sum 
of solutions is also a solution! 
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An example of a linear function 
 
For example, consider the function: 
 

[ ] ( ) 2t g t t= =L  
 

 
At 1t = : 

( ) ( )1 2 1 2g t = = =  
 

 
and at 2t = : 

( ) ( )2 2 2 4g t = = =  
 
 
Now at 1 2 3t = + =  we find: 
 

( ) ( )

( ) ( )

1 2 2 3
6
2 4

1 2

g

g g

+ =

=

= +

= +
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See, it works like it’s suppose to! 
 
 
More generally, we find that: 
 

( ) ( )

( ) ( )

1 2 1 2

1 2

1 2

2
2 2

g t t t t
t t

g t g t

+ = +

= +

= +

 

 
and 

( )

( )

2
2

g at at
a t
a g t

=

=

=

 

 
Thus, we conclude that the function ( ) 2g t t=  is indeed a linear function! 
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Surely this is linear 
 
Now consider this function: 
 

( )y x m x b= +  
 

Q:  But that’s the equation of a line!  That must be a linear 
function, right? 
 
A:  I’m not sure—let’s find out! 
 
We find that: 

( ) ( )y a x m ax b
mx ba

= +

= +
 

 
but: 

( ) ( )a y x a m x b
a m ax b

= +

= +
 

 
therefore:   

( ) ( )y a x a y x≠   !!! 
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It’s not; and stop calling me Shirley 
 
Likewise: 

( ) ( )1 2 1 2

1 2

y x x m x x b
m bm x x

+ = + +

= + +
 

but: 
( ) ( ) ( ) ( )1 2 1 2

1 2 2
y x y x m x b m x

m b
b

m x x
+ = + + +

= + +
 

 
therefore:   

( ) ( ) ( )1 2 1 2y x x y x y x+ ≠ +   !!! 
 

The equation of a line is not a linear function!  
 

 
Moreover, you can show that the functions: 

 
( ) ( )2 3f y y y x x= − =  

 
are likewise non-linear. 
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The derivative is a linear operator 
 
Remember, linear operators need not be functions.   
 
Consider the derivative operator, which operates on 
functions.   

( )d f x
dx

 

 
Note that: 
 

( ) ( ) ( ) ( )d d f x d g xf x g x
dx dx dx

+ = +⎡ ⎤⎣ ⎦  

 
and also: 

( ) ( )d d f xa f x a
dx dx

=⎡ ⎤⎣ ⎦  

 
We thus can conclude that the derivative operation is a linear operator on 
function ( )f x : 
 

( ) ( )d f x f x
dx

= ⎡ ⎤⎣ ⎦L  

 

d
dx
 

( )f x  
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Most operators are not linear 
 
You can likewise show that the integration operation is likewise a linear 
operator: 
 

( ) ( )f y dy f y⎡ ⎤= ⎣ ⎦∫ L  
 

But, you will find that operations such as: 
 

( ) ( )
2d g t y x dx

dt

∞

−∞
∫  

 
are not linear operators (i.e., they are non-linear operators). 
 
We find that most mathematical operations are in fact non-linear!  
 
Linear operators are thus form a small subset of all possible mathematical 
operations. 
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Linear operators allow for “easy” evaluation 
 
Q:  Yikes! If  linear operators are so rare, we are we wasting our time learning 
about them?? 
 
A:  Two reasons! 
 
Reason 1:  In electrical engineering, the behavior of most of our fundamental 
circuit elements are described by linear operators—linear operations are 
prevalent in circuit analysis! 
 
Reason 2: To our great relief, the two characteristics of linear operators allow 
us to perform these mathematical operations with relative ease! 
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 Signal Expansions 
 
Q: How is performing a linear operation easier than performing a non-linear 
one?? 
 
A:  The “secret” lies is the result:  
 

[ ] [ ]1 2 1 2a y b y a y b y+ = +⎡ ⎤⎣ ⎦L L L  
 

Note here that the linear operation performed on a relatively complex element 
1 2a y b y+  can be determined immediately from the result of operating on the 

“simple” elements 1y  and 2y . 
 
To see how this might work, let’s consider some arbitrary function of time 
( )v t , a function that exists over some finite amount of time T  (i.e., 
( ) 0 for 0 and v t t t T= < > ). 

 
Say we wish to perform some linear operation on this function: 
 

( ) ??v t =⎡ ⎤⎣ ⎦L  
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Complex signals as collections 
 of simple elements  

 
 
 

Depending on the difficulty of the operation L , and/or the 
complexity of the function ( )v t , directly performing this 
operation could be very painful (i.e., approaching impossible). 

 
 
Instead, we find that we can often expand a very complex and stressful 
function in the following way: 
 

( ) ( ) ( ) ( ) ( )0 0 1 1 2 2 n n
n

v t a t a t a t a tψ ψ ψ ψ
∞

=−∞

= + + + = ∑  

 
where the values na  are constants (i.e., coefficients), and the 
functions ( )n tψ  are known as basis functions. 
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Ms. Nomial’s first name is Poly 
 
 
For example, we could choose the basis functions: 
 
 

( ) for 0n
n t t nψ = ≥  

 
 
Resulting in a polynomial of variable t :   
 
 

( ) 2 3
0 1 2 3

0

n
n

n
v t a a t a t a t a t

∞

=

= + + + + = ∑  

 
 
This signal expansion is of course know as the Taylor Series expansion.   
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Choose your basis – 
 but choose wisely 

 
 
However, there are many other useful expansions (i.e., 
many other useful basis ( )n tψ ). 
 

* The key thing is that the basis functions ( )n tψ  are independent of the 
function ( )v t .  That is to say, the basis functions are selected by the 
engineer doing the analysis (i.e., you).  

 
* The set of selected basis functions form what’s known as a basis. With 

this basis we can analyze the function ( )v t . 
 

* The result of this analysis provides the coefficients na  of the signal 
expansion.  Thus, the coefficients are directly dependent on the form of 
function ( )v t  (as well as the basis used for the analysis).  As a result, the 
set of coefficients { }1 2 3, , ,a a a  completely describe the function ( )v t ! 
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It’s simpler to operate on each element 
 
 
Q:  I don’t see why this “expansion” of function of ( )v t  is helpful, it just looks 
like a lot more work to me. 
 
A:  Consider what happens when we wish to perform a linear operation on this 
function: 
 

( ) ( ) ( )nn n n
n n

v a tt a t ψψ
∞ ∞

=−∞ =−∞

⎡ ⎤
= =⎡ ⎤⎣ ⎦ ⎢ ⎥⎣

⎡ ⎤⎣ ⎦
⎦

∑ ∑L L L  

 
Look what happened!  
 
Instead of performing the linear operation on the arbitrary and difficult 
function ( )v t , we can apply the operation to each of the individual basis 
functions ( )n tψ .  
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Choose a basis that makes this “easy” 
 
Q:  And that’s supposed to be easier?? 
 
A:   It depends on the linear operation and on the basis functions ( )n tψ .   
 
Hopefully, the operation ( )[ ]n tψL  is simple and straightforward.  
 
 Ideally, the solution to ( )[ ]n tψL  is already known! 
 
Q:  Oh yeah, like I’m going to get so lucky.  I’m sure in all my 
circuit analysis problems evaluating ( )[ ]n tψL  will be long, 
frustrating, and painful. 
 
 
A: Remember, you get to choose the basis over which the function ( )v t  is 
analyzed.   
 
A smart engineer will choose a basis for which the operations ( )[ ]n tψL  are 
simple and straightforward! 
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This basis is quite popular 
 
Q:  But I’m still confused.  How do I choose what basis ( )n tψ  to use, and how do 
I analyze the function ( )v t  to determine the coefficients na ?? 
 
A:  Perhaps an example would help.  Among the most popular basis is this one: 
 

2

0

0 0,

nj t
T

n

e t T

t t T

π

ψ

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎧
≤ ≤⎪

⎪= ⎨
⎪ ≤ ≥⎪⎩

 

and: 

( ) ( ) ( )
2

0 0

1 1 nT T j t
T

n na v t t dt v t e dt
T T

π

ψ
⎛ ⎞− ⎜ ⎟∗ ⎝ ⎠= =∫ ∫  

 
So therefore: 
 

( )
2

for 0
nj t

T
n

n
v t a e t T

π⎛ ⎞∞ ⎜ ⎟
⎝ ⎠

=−∞

= ≤ ≤∑  

 
The astute among you will recognize this signal expansion as the 
Fourier Series! 
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It has a very important property! 
 
Q:  Yes, just why is Fourier analysis so prevalent?  
 
A:  The answer reveals itself when we apply a linear operator to the signal 
expansion: 
 

( )
2 2n nj t j t
T T

n n
n n

v t a e a e
π π⎛ ⎞ ⎛ ⎞∞ ∞− −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

=−∞ =−∞

⎡ ⎤ ⎡ ⎤
= =⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎣ ⎦

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑L L L  

 
Note then that we must simply evaluate: 
 

2 nj t
Te
π⎛ ⎞− ⎜ ⎟

⎝ ⎠
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦
L  

for all n. 
 
We will find that performing almost any linear operation L  
on basis functions of this type to be exceeding simple (more 
on this later)! 
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Linear Circuit Elements 
 
Most microwave devices can be described or modeled in terms of the three 
standard circuit elements:  
 
 

1.  RESISTANCE (R) 
 
2.  INDUCTANCE (L) 
 
3.  CAPACITANCE (C) 

 
 
 
For the purposes of circuit analysis, each of these three elements are defined 
in terms of the mathematical  relationship between the difference in electric 
potential ( )v t  between the two terminals of the device (i.e., the voltage across 
the device), and the current ( )i t flowing through the device. 
 
We find that for these three circuit elements, the relationship between ( )v t  
and ( )i t  can be expressed as a linear operator! 
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( ) ( ) ( )

( ) ( ) ( )

R R
R R

R
R R R

v tv t i t
R

i t v t R i t

= =⎡ ⎤⎣ ⎦

= =⎡ ⎤⎣ ⎦

Y

Z

L

L

 

 
 

( ) ( ) ( )

( ) ( ) ( )1

C C
C C

t
C

C C C

d v tv t i t C
d t

i t v t i t dt
C −∞

= =⎡ ⎤⎣ ⎦

′ ′= =⎡ ⎤⎣ ⎦ ∫

Y

Z

L

L

 

 
 

( ) ( ) ( )

( ) ( ) ( )

1 t
L

L L L

L L
L L

v t i t v t dt
L

d i ti t v t L
d t

−∞

′ ′= =⎡ ⎤⎣ ⎦

= =⎡ ⎤⎣ ⎦

∫Y

Z

L

L

 

 
Since the circuit behavior of these devices can be expressed with linear 
operators, these devices are referred to as linear circuit elements. 

( )Ri t  

( )Rv t

+

−

 R 

( )Ci t  

( )Cv t

+

−

 C 

L 

( )Li t  

( )Lv t

+

−
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A linear operator describes any relationship 
 
Q:  Well, that’s simple enough, but what about an element formed from a 
composite of these fundamental elements?   
 
For example, for example, how are ( )v t  and ( )i t  related in the circuit below?? 
 
 
 
 

( ) ( ) ???i t v t= =⎡ ⎤⎣ ⎦ZL  
 
 
 
 
A:  It turns out that any circuit constructed entirely with linear circuit 
elements is likewise a linear system (i.e., a linear circuit). 
 
As a result, we know that that there must be some linear operator that relates 
( )v t  and ( )i t in your example! 

 
( ) ( )i t v t=⎡ ⎤⎣ ⎦ZL  

  

L 

( )i t  

( )v t

+

−

 R 

C 
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This is very useful for multi-port networks 
 
The circuit above provides a good example of a single-port  (a.k.a. one-port) 
network. 
 
We can of course construct networks with two or more ports; an example of a 
two-port network is shown below: 
 
 
 
 
 
 
 
 
 
Since this circuit is linear, the relationship between all voltages and currents 
can likewise be expressed as linear operators, e.g.: 
 
 

( ) ( ) ( ) ( ) ( ) ( )21 1 2 21 1 2 22 2 2v t v t i t v t i t v t⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦ ⎣ ⎦Z ZL L L  

 

L 

( )1i t  

( )1v t

+

−

 R 

C 

( )2v t

+

−

 

( )2i t  
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 The linear operator is  
a convolution integral 

 
Q: Yikes! What would these linear operators for this circuit be?  How can we 
determine them? 
 
A:  It turns out that linear operators for all linear circuits can all be expressed 
in precisely the same form!   
 
For example, the linear operators of a single-port network are: 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

t

t

v t i t g t t i t dt

i t v t g t t v t dt

−∞

−∞

′ ′ ′= = −⎡ ⎤⎣ ⎦

′ ′ ′= = −⎡ ⎤⎣ ⎦

∫

∫

Z Z

Y Y

L

L

 

 
 
In other words, the linear operator of linear circuits can always be 
expressed as a convolution integral—a convolution with a circuit impulse 
function ( )g t . 
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The impulse response 
 
Q:  But just what is this “circuit impulse response”?? 
 
A: An impulse response is simply the response of one circuit function (i.e., ( )i t  
or ( )v t )  due to a specific stimulus by another.  
 

That specific stimulus is the impulse function ( )tδ . 
 
The impulse function can be defined as: 
 

( )
0

1
tsin

t lim tτ

π
τδ

πτ
τ

→

⎛ ⎞
⎜ ⎟
⎝ ⎠=

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
Such that is has the following two properties: 
 

1.    ( ) 0 for 0t tδ = ≠  
 

2.  ( ) 1 0t dt .δ
∞

−∞

=∫  

 



 

1/24/2011 Linear Circuit Elements lecture 7/8 

Jim Stiles The Univ. of Kansas Dept. of EECS 

We can define all sorts  
of impulse responses 

 
The impulse responses of the one-port example are therefore defined as: 
 
 

( ) ( ) ( ) ( )i t tg t v t
δ=Z  

and: 
 

( ) ( ) ( ) ( )v t tg t i t
δ=Y  

 
 

Meaning simply that ( )g tZ  is equal to the voltage function 
( )v t  when the circuit is “thumped” with a impulse current 

(i.e., ( ) ( )i t tδ= ), and ( )g tY  is equal to the current ( )ti  when 
the circuit is “thumped” with a impulse voltage (i.e., 
( ) ( )t tv δ= ). 
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We can make convolution integrals simple! 
 
Similarly, the relationship between the input and the output of a two-port 
network can be expressed as: 
 

( ) ( ) ( ) ( )2 21 1 1

t

v t v t g t t v t dt
−∞

′ ′ ′= = −⎡ ⎤⎣ ⎦ ∫L  

where: 
( ) ( ) ( ) ( )1

2 v t tg t v t
δ=

 

 
Note that the circuit impulse response must be causal (nothing can occur at the 
output until something occurs at the input), so that: 
 

( ) 0    for    0g t t= <  
 

Q:  Yikes! I recall evaluating convolution integrals to be messy, difficult and 
stressful. Surely there is an easier way to describe linear circuits!?! 
 
A: Nope! The convolution integral is all there is.   
 
However, we can use our linear systems theory toolbox to greatly simplify the 
evaluation of a convolution integral! 
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The Eigen Function  
of Linear Systems 

 
Recall that that we can express (expand) a time-limited signal with a weighted 
summation of basis functions: 
 

( ) ( )n n
n

v t a tψ= ∑  

 
where ( ) 0v t =  for 0t <  and t T> . 
 
Say now that we convolve this signal with some system impulse function ( )g t : 
 

( ) ( ) ( )

( ) ( )

( ) ( )

t

t

n n
n

t

n n
n

v t g t t v t dt

g t t a t dt

a g t t t dt

ψ

ψ

−∞

−∞

−∞

′ ′ ′= −⎡ ⎤⎣ ⎦

′ ′ ′= −

′ ′ ′= −

∫

∑∫

∑ ∫

L

 

 
Look what happened!  
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Convolve with the basis  
functions – not the signal 

 
 
Instead of convolving the general function ( )v t , we now find that we must 
simply convolve with the set of basis functions ( )n tψ . 
 
Q:  Huh? You say we must “simply” convolve the set of basis functions ( )n tψ .  
Why would this be any simpler?   
 
A:  Remember, you get to choose the basis ( )n tψ .  If you’re smart, you’ll choose 
a set that makes the convolution integral “simple” to perform! 
 
Q: But don’t I first need to know the explicit form of ( )g t  before I 
intelligently choose ( )n tψ ?? 
 
A: Not necessarily! 
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Time to use our “special” basis 
 
The key here is that the convolution integral: 
 

( ) ( ) ( )
t

n nt g t t t dtψ ψ
−∞

′ ′ ′= −⎡ ⎤⎣ ⎦ ∫L  

 
is a linear, time-invariant operator.   
 
Because of this, there exists one basis with an astonishing property! 
 
These special basis functions are: 
 

( )
0

2where
0 0

nj t

n n

e for t T
t n

Tfor t ,t T

ω

πψ ω
⎧ ≤ ≤
⎪ ⎛ ⎞= =⎨ ⎜ ⎟

⎝ ⎠⎪ < >⎩
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Prof. Stiles: So darn lame 
 
Now, inserting this function (get ready, here comes the astonishing part!) into 
the convolution integral: 
 

( )n n

t
j t j te g t t e dtω ω ′

−∞

′ ′⎡ ⎤ = −⎣ ⎦ ∫L  

 
and using the substitution u t t ′= − , we get: 

 

( ) ( ) ( )

( )
( )

( ) ( )

( )

0

0

n n

n n

n n

t t t
j t j t u

t

j t j u

j t j u

g t t e dt g u e du

e g u e du

e g u e du

ω ω

ω ω

ω ω

−
−

−∞ − −∞

−

+∞

∞
−

′ ′− = −

= −

=

∫ ∫

∫

∫

 

 
                         See! Doesn’t that astonish! 

 
 
 

 
 

Q:  I’m only astonished by how lame you are. How is this result any 
more “astonishing” than any of the other “useful” things you’ve 
been telling us? 
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Convolution becomes multiplication 
 
A: Note that the integration in this result is not a convolution—the integral is 
simply a value that depends on n (but not time t): 
 

( ) ( )
0

nj t
nG g t e dtωω

∞
−∫  

 
As a result, convolution with this “special” set of basis functions can always be 
expressed as: 
 

( ) ( )n n n

t
j t j t j t

ng t t e dt e G eω ω ωω′

−∞

′ ′ ⎡ ⎤− = =⎣ ⎦∫ L  

 
The remarkable thing about this result is that the linear operation on function 
( ) [ ]n nt exp j tψ ω=  results in precisely the same function of time t (save the 

complex multiplier ( )nG ω )! I.E.: 
 

( ) ( ) ( )nn nGt tωψ ψ=⎡ ⎤⎣ ⎦L  
 

Convolution with ( ) [ ]n nt exp j tψ ω=  is accomplished by simply multiplying 
the function by the complex number ( )nG ω ! 
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This only works for complex exponentials 
 

 
Note this is true regardless of the impulse response ( )g t  (the function ( )g t  
affects the value of ( )nG ω  only)! 
 
Q:  Big deal! Aren’t there lots of other functions that would satisfy the 
equation above equation? 
 
A:  Nope. The only function where this is true is: 
 
 

( ) nj t
n t e ωψ =  

 
 
This function is thus very special.   
 
We call this function the eigen function of linear, time-invariant systems. 
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But complex exponentials  
are two sinusoidal functions 

 
Q:  Are you sure that there are no other Eigen functions?? 
 
A:  Well, sort of. 
 
Recall from Euler’s equation that: 
 

n
n n

j t cos t j sin te ω ω ω= +  
 
It can be shown that the sinusoidal functions ncos tω  and nsin tω  are likewise 
Eigen functions of linear, time-invariant systems. 
 

The real and imaginary components of Eigen function [ ]nexp j tω  are 
also Eigen functions. 
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Every linear operator has its Eigen value 
 

Q:  What about the set of values ( )nG ω  ?? Do they have any significance or 
importance?? 
 
A: Absolutely!  
 
Recall the values ( )nG ω  (one for each n) depend on the impulse response of the 
system (e.g., circuit) only: 
 

( ) ( )
0

nj t
nG g t e dtωω

∞
−∫  

 
Thus, the set of values ( )nG ω  completely characterizes a linear time-invariant 
circuit over time 0 t T≤ ≤ .   
 

We call the values ( )nG ω  the Eigen values of the linear, time-invariant 
circuit. 
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We’re electrical engineers:  
why should we care? 

 
 

Q: OK Poindexter, all Eigen stuff this might be 
interesting if you’re a mathematician, but is it at all 
useful to us electrical engineers? 
 
A: It is unfathomably useful to us electrical engineers! 

 
 
 
Say a linear, time-invariant circuit is excited (only) by a sinusoidal source (e.g., 
( ) coss ov t tω= ).   

 
Since the source function is the Eigen function of the circuit, we will find that 
at every point in the circuit, both the current and voltage will have the same 
functional form.  
 

That is, every current and voltage in the circuit will likewise be a 
perfect sinusoid with frequency oω !!  
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Haven’t you wondered  
why we always use these? 

 
Of course, the magnitude of the sinusoidal oscillation will 
be different at different points within the circuit, as will 
the relative phase.  
 
But we know that every current and voltage in the circuit 
can be precisely expressed as a function of this form: 
 

( )cos oA tω ϕ+  
 

Q:  Isn’t this pretty obvious? 
 
 
A:  Why should it be?   
 
Say our source function was instead a square wave, or triangle wave, or a 
sawtooth wave.   
 
We would find that (generally speaking) nowhere in the circuit would we find 
another current or voltage that was a perfect square wave (etc.)! 
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We “just” have to determine  
magnitude and phase! 

 
 
 
In fact, we would find that not only are the current 
and voltage functions within the circuit different 
than the source function (e.g. a sawtooth) they are 
(generally speaking) all different from each other. 

 
 
We find then that a linear circuit will (generally speaking) distort any 
source function—unless that function is the Eigen function (i.e., a 
sinusoidal function). 
 

Thus, using an Eigen function as circuit source greatly simplifies our linear 
circuit analysis problem.   
 
All we need to accomplish this is to determine the magnitude A and relative 
phase ϕ  of the resulting (and otherwise identical) sinusoidal function! 
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A Complex Representation of 
Sinusoidal Functions 

 
Q:  So, you say (for example) if a linear two-port circuit is driven by a sinusoidal 
source with arbitrary frequency oω , then the output will be identically 
sinusoidal, only with a different magnitude and relative phase. 
 
 
 
 
 
 
 
 
 
How do we determine the unknown magnitude 2mV  and phase 2ϕ  of this output? 
 

L ( ) ( )1 1 1cosm ov t V tω ϕ

+

= +

−

 R 

C 

( ) ( )2 22 cos omv t tV ω ϕ

+

= +

−
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Eigen values are complex 
 
A:  Say the input and output are related by the impulse response ( )g t : 
 

( ) ( ) ( ) ( )2 1 1

t

v t v t g t t v t dt
−∞

′ ′ ′= = −⎡ ⎤⎣ ⎦ ∫L  

 
We now know that if the input were instead: 
 

( ) 0
1

j tv t e ω=  
then: 

( ) ( )0 0
2 0

j t j tv t e G eω ωω⎡ ⎤= =⎣ ⎦L  
where: 

( ) ( ) 0
0

0

j tG g t e dtωω
∞

−∫  

 
Thus, we simply multiply the input ( ) 0

1
j tv t e ω=  by the complex eigen value ( )0G ω  

to determine the complex output ( )2v t : 
 

( ) ( ) 0
2 0

j tv t G e ωω=  
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Complex voltages and currents 
are your friend! 

 
Q:  You professors drive me crazy with all this math involving 
complex (i.e., real and imaginary) voltage functions.    In the lab I can 
only generate and measure real-valued voltages and real-valued   
voltage functions. Voltage is a real-valued, physical parameter! 

 
 
A:  You are quite correct. 
 
Voltage is a real-valued parameter, expressing electric potential (in Joules) per 
unit charge (in Coulombs).  
 
Q:  So, all your complex formulations and complex eigen values and complex 
eigen functions may all be sound mathematical abstractions, but aren’t they 
worthless to us electrical engineers who work in the “real” world (pun 
intended)? 
 
A:  Absolutely not!  Complex analysis actually simplifies our analysis of real-
valued voltages and currents in linear circuits (but only for linear circuits!). 
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Remember Euler 
 
The key relationship comes from Euler’s Identity: 
 

cos sinj te t j tω ω ω= +  
 
Meaning: 

{ }Re cosj te tω ω=  
 

Now, consider a complex value C.  We of course can write this complex number 
in terms of it real and imaginary parts: 
 

{ } { }Re and ImC a j b a C b C= + ∴ = =  
 

But, we can also write it in terms of its magnitude C  and phase ϕ ! 
 
 

jC C e ϕ=  
 
where: 
 

2 2 1tan bC C C a b aϕ∗ − ⎡ ⎤= = + = ⎢ ⎥⎣ ⎦
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A complex number has magnitude and phase 
 
Thus, the complex function 0j tC e ω is:  
 

( ) ( )

0 0

0

0 0cos sin

j t j t

j t

jC e e
e

C e
C
C t j C t

ω ω

ω ϕ

ϕ

ω ϕ ω ϕ

+

=

=

= + + +

 

 
Therefore we find: 

( ) { }0
0cos Re j tC eC t ωω ϕ+ =  

 
Now, consider again the  real-valued voltage function: 
 

( ) ( )1 1 1cosmv t V tω ϕ= +  
 

This function is of course sinusoidal with a magnitude 1mV  and phase 1ϕ .   
 
Using what we have learned above, we can likewise express this real function as: 
 

( ) ( ) { }1 1 1 1cos Re j t
mv t V t V e ωω ϕ= + =  

 
where 1V   is the complex number:     1

1 1
j

mV V e ϕ=  
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But what is the output signal? 
 
Q:  I see!  A real-valued sinusoid has a magnitude and phase, just like complex 
number.   
 
A single complex number (V ) can be used to specify both of the fundamental 
(real-valued) parameters of our sinusoid ( ,mV ϕ ).   
 
What I don’t see is how this helps us in our circuit analysis.  
 
After all: 

( ) ( ) { }2 1
oj t

ov t G Re V e ωω≠  
 

What then is the real-valued output ( )2v t  of our two-port network when the 
input ( )1v t is the real-valued sinusoid: 
 

  
( ) ( )

{ }
1 1 1

1

cos

Re o

m o
j t

v t V t
V e ω

ω ϕ= +

=
  ??? 
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The math will reveal the answer! 
 
A:  Let’s go back to our original convolution integral: 
 

( ) ( ) ( )2 1

t

v t g t t v t dt
−∞

′ ′ ′= −∫  

If: 
( ) ( )

{ }
1 1 1

1

cos

Re o

m o
j t

v t V t
V e ω

ω ϕ= +

=
 

then: 

( ) ( ) { }2 1
o

t
j tv t g t t Re V e dtω ′

−∞

′ ′= −∫  

 
Now, since the impulse function ( )g t  is real-valued (this is really important!) it 
can be shown that: 
 

( ) ( ) { }

( )

2 1

1

o

o

t
j t

t
j t

v t g t t Re V e dt

Re g t t V e dt

ω

ω

′

−∞

′

−∞

′ ′= −

⎧ ⎫
′ ′= −⎨ ⎬

⎩ ⎭

∫

∫
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The output signal 
 
Now, applying what we have previously learned; 
 

( ) ( )

( )

( ){ }

2 1

1

1 0

o

o

o

t
j t

t
j t

j t

v t Re g t t V e dt

Re V g t t e dt

Re V G e

ω

ω

ωω

′

−∞

′

−∞

⎧ ⎫
′ ′= −⎨ ⎬

⎩ ⎭
⎧ ⎫

′ ′= −⎨ ⎬
⎩ ⎭

=

∫

∫  

 
Thus, we finally can conclude the real-valued output ( )2v t  due to the real-
valued input: 

( ) ( ) { }1 1 1 1cos Re oj t
m ov t V t V e ωω ϕ= + =  

is: 
 

( ) { } ( )2 2 2 2
oj t

m ov t Re V e V cos tω ω ϕ= = +  

where: 
 
( )2 1oV G Vω=  
 

The really important result here is the last one! 
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The Eigen value of the Linear operator is 
its “Frequency Response” 

 
 
 
 
 
 
 
The magnitude and phase of the output sinusoid (expressed as complex value 2V ) 
is related to the magnitude and phase of the input sinusoid (expressed as 
complex value 1V ) by the system eigen value ( )oG ω : 
 

( )2

1
o

V G
V

ω=  

 
Therefore we find that really often in electrical engineering, we: 
 

1. Use sinusoidal (i.e., eigen function) sources. 
 
2.  Express the voltages and currents created by these sources as complex 
values (i.e., not as real functions of time)! 

L ( ) ( )1 1 1cosm ov t V tω ϕ

+

= +

−

 R 

C 

( ) ( ){ }2 1Re oj t
ov t G V e ωω

+

=

−
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Make sure you know what complex voltages 
and currents physically represent! 

 
 
For example, we might say “ 3 2.0V = ”, meaning: 
 

( ) { }0 0
3 32.0 2.0 Re 2.0 2.0cosoj j j t

oV e v t e e tω ω= = ⇒ = =  
 
 
Or “ 3.0LI = − ”, meaning: 
 

( ) { } ( )2.0 3.0 Re 3.0 3.0cosoj j j t
L L oI e i t e e tπ π ω ω π= − = ⇒ = = +  

 
 
Or “ sV j= ”, meaning: 
 

( ) ( ) ( ){ } ( )2 21.0 Re 1.0 1.0cos 2
oj j j t

s s oV j e v t e e t
π π ω πω= = ⇒ = = +  
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Summarizing 
 

* Remember, if a linear circuit is excited by a sinusoid (e.g., eigen function 
0exp j tω⎡ ⎤⎣ ⎦), then the only unknowns are the magnitude and phase of the 

sinusoidal currents and voltages associated with each element of the 
circuit.   

 
* These unknowns are completely described by complex values, as complex 

values likewise have a magnitude and phase. 
 

* We can always “recover” the real-valued voltage or current function by 
multiplying the complex value by 0exp j tω⎡ ⎤⎣ ⎦ and then taking the real part, 
but typically we don’t—after all, no new or unknown information is revealed 
by this operation! 

 
 
 

 
 
  
 

L 1V

+

−

 R 

C 

( )2 1oV G Vω

+

=

−
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 Analysis of Circuits Driven by 
Arbitrary Functions 

 
Q:  What happens if a linear circuit is excited by some function that is not an 
“eigen function”?  Isn’t limiting our analysis to sinusoids too restrictive? 
 
A:   Not as restrictive as you might think. 
 
Because sinusoidal functions are the eigen-functions of linear, time-invariant 
systems, they have become fundamental to much of our electrical engineering 
infrastructure—particularly with regard to communications. 
 
For example, every radio and TV station is assigned its very own eigen function 
(i.e., its own frequency ω )!  
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Eigen functions: without them 
communication would be impossible 

 
It is very important that we use eigen functions for electromagnetic 
communication, otherwise the received signal might look grotesquely different 
from the one that was transmitted! 
 
 
 
 
 
 
 
 
 
 
With sinusoidal functions (being eigen functions and all), we know that receive 
function will have precisely the same form as the one transmitted (albeit quite a 
bit smaller). 
 

Thus, our assumption that a linear circuit is excited by a sinusoidal 
function is often a very accurate and practical one! 

  
( ) nj t

n t e ωψ ≠  
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What if the signal is not sinusoidal? 
 
Q: Still, we often find a circuit that is not driven by a sinusoidal source.  How 
would we analyze this circuit? 
 
A: Recall the property of linear operators: 
 

[ ] [ ]1 2 1 2a y b y a y b y+ = +⎡ ⎤⎣ ⎦L L L  
 
We now know that we can expand the function: 
 

( ) ( ) ( ) ( ) ( )0 0 1 1 2 2 n n
n

v t a t a t a t a tψ ψ ψ ψ
∞

=−∞

= + + + = ∑  

 
and we found that: 
 

( ) ( ) ( )nn n n
n n

v a tt a t ψψ
∞ ∞

=−∞ =−∞

⎡ ⎤= =⎡ ⎤⎣ ⎦ ⎢ ⎥⎣
⎡ ⎤⎣ ⎦

⎦
∑ ∑L L L  
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Let’s choose Eigen functions as our basis 
 
 
We found that any linear operation ( )[ ]n tψL  is greatly simplified if we choose 
as our basis function the eigen function of linear systems: 
 
 

( )
0

2where
0 0

nj t

n n

e for t T
t n

Tfor t ,t T

ω

πψ ω
⎧ ≤ ≤
⎪ ⎛ ⎞= =⎨ ⎜ ⎟

⎝ ⎠⎪ < >⎩

 

 
 
so that: 

( ) ( ) nj t
n nt G e ωψ ω=⎡ ⎤⎣ ⎦L  

 
 
And so: 

( ) ( )n n nj t j t j t
n n n n

n n n
v t a e a e a G eL L Lω ω ωω

∞ ∞ ∞

=−∞ =−∞ =−∞

⎡ ⎤ ⎡ ⎤⎡ ⎤ = = =⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
∑ ∑ ∑
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Just follow these steps… 
 
Thus, for the example: 
 
 
 
 
 
 
 
 
 
We follow these analysis steps: 
 
1.  Expand the input function ( )1v t  using the basis functions ( ) [ ]n nt exp j tψ ω= : 
 

( ) 0 1 2
1 01 11 21 1

nj t j tj t j t
n

n
v t V e V e V e V eω ωω ω

∞

=−∞

= + + + = ∑  

 
where: 

( )1 1
0

1 n

T
j t

nV v t e dt
T

ω−= ∫  

 

L ( )1v t

+

−

 R 

C 

( )2v t

+

−
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…and the output is determined 
 
2. Evaluate the eigen values of the linear system: 
 

( ) ( )
0

nj t
nG g t e dtωω

∞
−= ∫  

 
3.  Perform the linear operation (the convolution integral) that relates ( )2v t  to 
( )1v t : 

 
( ) ( )

( )

2 1

1

1

1

n

n

n

j t
n

n

j t
n

n

j t
n n

n

v t v t

V e

V e

V G e

ω

ω

ωω

∞

=−∞

∞

=−∞

∞

=−∞

= ⎡ ⎤⎣ ⎦
⎡ ⎤

= ⎢ ⎥⎣ ⎦

⎡ ⎤= ⎣ ⎦

=

∑

∑

∑

L

L

L
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A Summary 
 
Summarizing:            

( )2 2
nj t

n
n

v t V e ω
∞

=−∞

= ∑  

 
where:               

( )2 1n n nV G Vω=  
and: 
 

( )1 1
0

1 n

T
j t

nV v t e dt
T

ω−= ∫           ( ) ( )
0

nj t
nG g t e dtωω

∞
−= ∫  

 
 
 
 
 
 
 
 
 
As stated earlier, the signal expansion used here is the Fourier Series. 

L ( ) 11
nj t

n
n

V ev t ω
∞

=−∞

+

=

−

∑  R 

C 

( ) ( )2 1 1
nj t

n n
n

v t G V e ωω
∞

=−∞

+

=

−

∑  
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The Fourier Transform 
 
Say that the timewidth T of the signal ( )1v t  becomes infinite.  In this case we 
find our analysis becomes: 
 

( ) ( )2 2
1

2
j tv t V e dωω ω

π

+∞

−∞

= ∫  

where:               
( ) ( ) ( )2 1V G Vω ω ω=  

and: 

( ) ( )1 1
j tV v t e dtωω

+∞
−

−∞

= ∫           ( ) ( ) j tG g t e dtωω
+∞

−

−∞

= ∫  

 
The signal expansion in this case is the Fourier Transform. 
 
We find that as T → ∞  the number of discrete system eigen values ( )nG ω  
become so numerous that they form a continuum— ( )G ω  is a continuous function 
of frequencyω . 
 
We thus call the function ( )G ω  the eigen spectrum or frequency response of 
the circuit. 
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This still looks very difficult! 
 
Q: You claim that all this fancy mathematics (e.g., eigen functions and eigen 
values) make analysis of linear systems and circuits much easier, yet to apply 
these techniques, we must determine the eigen values or eigen spectrum: 
 
 

( ) ( )
0

nj t
nG g t e dtωω

∞
−= ∫         ( ) ( ) j tG g t e dtωω

+∞
−

−∞

= ∫  

 
 
 
 
Neither of these operations look at all easy.   
 
And in addition to performing the integration, we must somehow determine the 
impulse function ( )g t  of the linear system as well ! 
 
Just how are we supposed to do that? 
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It’s not nearly as difficult as it appears! 
 
A: An insightful question!   
 
Determining the impulse response ( )g t and then the frequency response ( )G ω  
does appear to be exceedingly difficult—and for many linear systems it indeed 
is! 
 
However, much to our great relief, we can determine the eigen 
spectrum ( )G ω  of linear circuits without having to perform a difficult 
integration.   
 
In fact, we don’t even need to know the impulse response ( )g t ! 
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The Eigen Values 
of Linear Circuits 

 
Recall the linear operators that define a capacitor: 
 

( ) ( ) ( )

( ) ( ) ( )1

C C
C C

t
C

C C C

d v tv t i t C
d t

i t v t i t dt
C −∞

= =⎡ ⎤⎣ ⎦

′ ′= =⎡ ⎤⎣ ⎦ ∫

Y

Z

L

L

 

 
We now know that the Eigen function of these linear, time-invariant operators—
like all linear, time-invariant operators—is [ ]exp j tω . 
 
The question now is: what is the Eigen value of each of these operators?   
 
It is this value that defines the physical behavior of a given capacitor! 
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The operator is linear 
 
For ( ) [ ]expCv t j tω= , we find: 
 

( ) ( )

( )

C
C C

j t

j t

i t v t
d eC

d t
j C e

ω

ωω

= ⎡ ⎤⎣ ⎦

=

=

YL

 

 
Just as we expected, the Eigen function [ ]exp j tω  “survives” the linear 
operation unscathed—the current function ( )i t  has precisely the same form as 
the voltage function ( ) [ ]expv t j tω= . 
 
The only difference between the current and voltage is the multiplication of 
the Eigen value, denoted as ( )CG ωY . 
 

( ) ( ) ( )j t j tC C
Ci t v t e G eY YL ω ωω⎡ ⎤= = =⎣ ⎦  
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The Eigen value of a capacitor 
 
Since we just determined that for this case: 
 

( ) ( ) j t
Ci t j C e ωω=  

 
it is evident that the Eigen value of the linear operation: 
 

( ) ( ) ( )C d v ti t v t C
d t

= =⎡ ⎤⎣ ⎦YL  

is: 
( ) 2jCG j C C e π
ω ω ω= =Y   !!! 

 



 
  

 

1/25/2011 The Eigen Spectrum of linear circuits lecture.doc 4/15 

Jim Stiles The Univ. of Kansas Dept. of EECS 

Let’s now consider real-valued functions 
 
So for example, if:  
 

( ) ( )
( ){ }

cos

Re o

m o

j j t
m

v t V t

V e eϕ ω

ω ϕ= +

=
 

 
we will find that: 
 

( ) ( ) ( )
( )

( )

2

2

o o

o

o

j t j tj jC C
m o m

j j tj
m

j j t
m

V e e G V e e

C e V e e

C V e e

Y YL ω ωϕ ϕ

π ωϕ

π ϕ ω

ω

ω

ω
+

⎡ ⎤ =⎣ ⎦
⎛ ⎞= ⎜ ⎟
⎝ ⎠
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

Therefore: 

( ) ( )

( )
( )

2Re

cos

sin
2

o
j j t

C m

m o

m o

t

V t

V t

i C V e e

C

C

πϕ ω

ω ϕ

ω ϕ

ω

πω

ω

+
=

= + +

+

⎧ ⎫
⎨ ⎬
⎩ ⎭

= −
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Remember what the complex value means 
 
Hopefully, this example again emphasizes that these real-valued sinusoidal 
functions can be completely expressed in terms of complex values.   
 
For example, the complex value: 
 

j
mCV V e ϕ=  
 

means that the magnitude of the sinusoidal voltage is mCV V= , and its relative 
phase is CV ϕ∠ = .  The complex value: 
 

( ) 2jC
C C CI G V C e VY

π
ω ω⎛ ⎞= = ⎜ ⎟

⎝ ⎠
 

 
likewise means that the magnitude of the sinusoidal current is: 
 

( ) ( )C C
C C C mI G V G V C VY Yω ω ω= = =  

 
And the relative phase of the sinusoidal current is: 
 

( ) 2
C

C CI G VY
πω ϕ∠ = ∠ + ∠ = +  
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Now find the voltage from the current 
 
We can thus summarize the behavior of a 
capacitor with the simple complex equation: 
 

( )
2

C C

j
C

I j C V

C e V
π

ω

ω

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 
 
Now let’s return to the second of the two linear operators that describe a 
capacitor: 

( ) ( ) ( )1 t
C

C C Cv t i t i t dt
C −∞

′ ′= =⎡ ⎤⎣ ⎦ ∫ZL  

 
Now, if the capacitor current is the Eigen function ( ) expC t j ti ω= ⎡ ⎤⎣ ⎦ , we find: 
 

1 1t
j t j t j tC e e dt e

C j CZL
ω ω ω

ω
′

−∞

⎛ ⎞⎡ ⎤ ′= = ⎜ ⎟⎣ ⎦ ⎝ ⎠
∫  

 
where we assume ( ) 0i t = −∞ = . 
 

( )C CI j C Vω=  

CV

+

−

 C 
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The Eigen value of this linear operator 
 
Thus, we can conclude that: 
 

( ) 1j t j t j tC Ce G e e
j C

ω ω ωω
ω

⎛ ⎞
⎡ ⎤ = = ⎜ ⎟⎣ ⎦

⎝ ⎠
Z ZL  

 
Hopefully, it is evident that the Eigen value of this linear operator is:  
 

( ) ( )3
21 1 jC jG e

j C C C
π

ω
ω ω ω

−
= = =Z  

 
And so:   

1
C CV I

j Cω
⎛ ⎞

= ⎜ ⎟
⎝ ⎠
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Impedance is simply an Eigen value! 
 
Q:  Wait a second! Isn’t this essentially the same result as the one derived for 
operator C

YL ?? 
 
A:  It’s precisely the same!  For both operators we find: 
 

1C

C

V
I j Cω

=  

 
This should not be surprising, as both operators C

YL  and C
ZL  relate the current 

through and voltage across the same device (a capacitor). 
 

The ratio of complex voltage to complex current is of course referred to as the 
complex device impedance Z. 
 

VZ
I

 

 
An impedance can be determined for any linear, time-invariant one-port 
network—but only for linear, time-invariant one-port networks! 
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Know what impedance tells you! 
 
Generally speaking, impedance is a function of frequency.  In fact, the 
impedance of a one-port network is simply the Eigen value ( )G ωZ  of the linear 
operator ZL : 
 
 

V Z I=                                               
( ) ( )

( )

i t v t

Z G ω

=⎡ ⎤⎣ ⎦

=

Z

Z

L

 

 
 
 
Note that impedance is a complex value that provides us with two things: 
 
1.  The ratio of the magnitudes of the sinusoidal voltage and current: 

VZ
I

=  

 
2.  The difference in phase between the sinusoidal voltage and current: 

Z V I∠ = ∠ − ∠  
 

I  

V

+

−

 Z 
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Admittance 
 
Q:  What about the linear operator: 
 

( ) ( )v t i t=⎡ ⎤⎣ ⎦YL   ?? 
 

A:  Hopefully it is now evident to you that: 
 

( )
( )
1 1G

G Z
ω

ω
= =Y

Z

 

 
The inverse of impedance is admittance Y: 
 

1 IY
Z V

=  
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Inductors and resistors 
 
Now, returning to the other two linear circuit elements, we find (and you can 
verify) that for resistors: 
 

( ) ( ) ( )

( ) ( ) ( )

1R R
R R

R R
R R

v t i t G R

i t v t G R

ω

ω

= ⇒ =⎡ ⎤⎣ ⎦

= ⇒ =⎡ ⎤⎣ ⎦

Y Y

Z Z

L

L

 

and for inductors: 
 

( ) ( ) ( )

( ) ( ) ( )

1L L
L L

L L
L L

v t i t G
j L

i t v t G j L

ω
ω

ω ω

= ⇒ =⎡ ⎤⎣ ⎦

= ⇒ =⎡ ⎤⎣ ⎦

Y Y

Z Z

L

L

 

 
meaning: 
 

01 j
R

R
Z R R e

Y
= = =         and       ( )21 j

L
L

Z j L L e
Y

π
ω ω= = =  
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All the rules of circuit theory apply to 
complex currents and voltages too 

 
Now, note that the relationship  

 
VZ
I

=  

 
forms a complex “Ohm’s Law” with regard to complex currents and voltages.   
 
Additionally, ICBST (It Can Be Shown That) Kirchoff’s Laws are likewise valid 
for complex currents and voltages: 
 

0 0n n
n n

I V= =∑ ∑  

 
where of course the summation represents complex addition. 
 
As a result, the impedance (i.e., the Eigen value) of any one-port device can be 
determined by simply applying a basic knowledge of linear circuit analysis! 
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We can determine Eigen values  
without knowing the impulse response! 

 
Returning to the example: 
 
 

VZ
I

=  

 
 
 
And thus using out basic circuits knowledge, we find: 
 

1
j CR LCZ Z Z Z R j Lω ω= + = +  

 
Thus, the Eigen value of the linear operator: 
 

( ) ( )i t v t=⎡ ⎤⎣ ⎦ZL  
 
For this one-port network is: 
 

( ) 1
j CG R j Lωω ω= +Z  

L 

I  

V

+

−

 R 

C 
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No need for convolution! 
 
Look what we did! We were able to determine ( )G ωZ  without explicitly 
determining impulse response ( )g tZ , or having to perform any integrations! 
 
Now, if we actually need to determine the voltage function ( )v t  created by 
some arbitrary current function ( )i t , we integrate: 
 

( ) ( ) ( )

( ) ( )1

1
2
1

2

j t

j t
j C

v t G I e d

R j L I e d

ω

ω
ω

ω ω ω
π

ω ω ω
π

+∞

−∞

+∞

−∞

=

= +

∫

∫

Z

 

where: 

( ) ( ) j tI i t e dtωω
+∞

−

−∞

= ∫  

 
Otherwise, if our current function is time-harmonic (i.e., sinusoidal with 
frequency ω ), we can simply relate complex current I  and complex voltage V  
with the equation: 

( )1
j C

V Z I
R j L Iω ω

=

= +
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See how easy this is? 
 
Similarly, for our two-port example, 
we can likewise determine from basic 
circuit theory the Eigen value of 
linear operator: 
 

( ) ( )21 1 2v t v t=⎡ ⎤⎣ ⎦L  
 
 
 

is:     ( )21 1
L R

L RC

j L RZ ZG
Z Z Z j L R

j C

ω
ω

ω
ω

= =
+ +

 

 
so that:      ( )2 21 1V G Vω=  
 

or more generally:   ( ) ( ) ( )2 21 1
1

2
j tv t G V e dωω ω ω

π

+∞

−∞

= ∫  

 

where:      ( ) ( )1 1
j tV v t e dtωω

+∞
−

−∞

= ∫  

 

L 
1V

+

−

 R 

C 

2V

+

−
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Eigen Values of the Laplace 
Transform 

 
Well, I fibbed a little when I stated that the Eigen function of 
linear, time-invariant systems (circuits) is: 
 

{ } ( )jω t jω te G ω eL =  

 
Instead, the more general Eigen function is: 
 

{ } ( )st ste G s eL =  

 
Where s  is  a complex (i.e., real and imaginary) frequency of the form: 
 

s σ j ω= +  
such that: 

( )σ j ω ts t σ t j ω te e e e+
= =  

 
Note then, if 0σ = , the Eigen function s te  becomes the previously described 
Eigen function jω te ! 
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What does this function mean? 
 
Q:  Yikes!  I understand ste  even less than I understood jω te !  What does this 
function mean? 
 
A:  Remember, the function s te  is a complex function—it is actually an 
expression of two real-value functions. 
 
These two real-valued functions could be its real and imaginary components: 
 

( )cos sin

ss nc io

s t

σ tσ

t j ω

t

σ t

σ t

e e e
e ωt j ωt
e et tjω ω

+=

= +

= +

 

 
 

 
 
 
 
 
 
 

2 4 6 8 10

1.0

0.5

0.5

1.0

0.2
3.2

σ
ω
= −
=
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Magnitude and phase 
 
Or, the two real-valued functions could alternatively be the complex values 
magnitude and phase: 
 
 

 
 
 
 
 
 
 

If 0σ = , then +=s t j ω te e , and we’re back to the time-harmonic Eigen function: 
 
 

 
 
 
 

 
 

 

2 4 6 8 10

3

2

1

1

2

3

2 4 6 8 10

1.0

0.5

0.5

1.0

0.2
3.2

σ
ω
= −
=

0.0
3.2

σ
ω
=
=
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Can we use this as a basis? 
 
Q:  What about basis functions? Can we use these Eigen function to expand a 
signal? 
 
A:  Sure! Instead of the Fourier Transform, the result of expanding a signal 
with basis function s te  is the Laplace Transform. 
 
For example, again consider the following linear circuit: 
 
 
 
 
 
 
 
 
 

L 

( )1i t  

( )1v t

+

−

 R 

C 

( ) ( ){ } ( ) ( )2 1 1v t v t g t t v t dt
∞

−∞

+

′ ′ ′= = −

−

∫L  

( )2i t  
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A summary 
 
Using the Laplace transform, we can determine the output voltage ( )2v t  by: 
 

1. Expand the input signal ( )1v t  using the basis function s te : 
 

( ) ( )
+∞

−= ∫1 1
0

s tV s v t e dt    (or use a look-up table!) 

 
2. Determine the Eigen value of the linear operator       relating  ( )1v t  to 

( )2v t : 

( ) ( ){ } ( ) ( )

( ) ( ) ( )

∞

−∞

′ ′ ′= = −

⇒ =

∫2 1 1

2 1

v t v t g t t v t dt

V s G s V s

L

 

where: 

           ( ) ( )
+∞

−

−∞

= ∫ s tG s g t e dt   

 
3.   Determine ( )2v t   from the inverse Laplace transform of ( )2V s  

(definitely use a look-up table!). 
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The Eigen values of circuit elements 
 
Q: But how do we determine ( )G s ? 
 
A:  It’s just pretty darn simple!  
 
Again, we determine  the Eigen value of each linear operator of our three linear 
circuit elements—only this time we use the Eigen function s te ! 
 

 
 
 
 
 
 
 
 
 
 
 

( )Ri t  

( )Rv t

+

−

 R 

( )Ci t  

 

C ( )

+

−

Cv t

( ) ( ) ( )

( ) ( )

CC
C C

s t
s t s tC

C C

d v t
i t v t C

d t

d ee C sC e
d t

I s sC V s

⎡ ⎤= =⎣ ⎦

⎡ ⎤ = =⎣ ⎦

=

Y

Y

L

L

( ) ( ) ( )

( ) ( )

RR
R R

s t
s tR

R
R

v t
i t v t

R

ee
R

V s
I s

R

⎡ ⎤= =⎣ ⎦

⎡ ⎤ =⎣ ⎦

=

Y

Y

L

L
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Just apply your circuits knowledge! 
 

( ) ( ) ( )

( ) ( )

−∞

−∞

⎡ ⎤ ′ ′= =⎣ ⎦

⎡ ⎤ ′= =⎣ ⎦

=

∫

∫

1

1 1

t
L

L L L

t
s t s t s tL

L
L

v t i t v t dt
L

e e dt e
L sL

V s
I s

s L

Y

Y

L

L  

 
As a result we can determine the Eigen value ( )G s  of a linear circuit by applying 
our circuit theory: 
 
 
 
 
 
 
 
 
 

L 

( )Li t  

( )Lv t

+

−

 

sL 

( )1I s  

( )

+

−

1V s  R 

1
sC  

( )

+

−

2V s  

( )2I s  

( )
( ) ( )2

21
1

1
V s s L R

G s
V s sL R

sC

= =
+
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Frequency Bands 
 
The Eigen value ( )G ω  of a linear operator is of course dependent on frequency 
ω —the numeric value of ( )G ω  depends on the frequency ω  of the basis 
function jωte . 
 
 
 
 
 
 
 
 
 
 
 
 
 

ω  

( )G ω  

Lω  Hω  
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Frequency Response 
 
The frequency ω  has units of radians/second; it can likewise be expressed as: 
 

2ω π f=  
 

where f  is the sinusoidal frequency in cycles/second (i.e., Hertz).  
 
As a result, the function ( )G ω  is also known as the frequency response of a 
linear operator (e.g. a linear circuit). 

 
The numeric value of the signal frequency f  has 
significant practical ramifications to us electrical 
engineers, beyond that of simply determining the 
numeric value ( )G ω . 
 
These practical ramifications include the 
packaging, manufacturing, and interconnection of 
electrical and electronic devices.  

 
The problem is that every real circuit is awash in inductance and capacitance!  
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Those darn parasitics!  
 
Q:  If this is such a problem, shouldn’t we just avoid using 
capacitors and inductors? 
 
A:  Well, capacitors and inductors are particular useful to us 
EE’s.  
 
But, even without capacitors and inductors, we find that our circuits are still 
awash in capacitance and inductance! 
 
Q:  ??? 
 
A:  Every circuit that we construct will have a inherent set of parasitic 
inductance and capacitance. 
 
Parasitic inductance and capacitance is associated with elements other than 
capacitors and inductors!   
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Every wire an inductor 
 
For example, every wire and lead has a small inductance associated with it: 
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Seems simple enough… 
 
Consider then a “wire” above a ground plane: 
 
 
 
 
 
 
 
 
 
 
From KVL and KCL, we “know” that: 
 

1 2 1 2V V I I= =  
 

Thus, the linear operator (for example) relating voltage 1V  to voltage 2V  has an 
Eigen value equal to 1.0 for all frequencies: 
 

( )2

1

1.0
V G ω
V

= =  

 

1V
+

−
2V
+

−

1I
2I
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…but its harder than you thought! 
 
But, the unfortunate reality is that the “wire” exhibits inductance, and likewise 
a capacitance between it and the ground plane 
 
 
 
 
 
 
 
 
 
 
 
We now see that the in fact the currents and voltage must be dissimilar: 
 

1 2 1 2V V I I≠ ≠  
 

And so the Eigen value of the linear operator is not equal to 1.0! 
 

( )2

1

1.0
V G ω
V

= ≠  

jωL jωL

j
ωC

−1V
+

−
2V
+

−

1I
2I
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The parasitics are small 
 
Now, these parasitic values of L and C  are likely to be very small, so that if the 
frequency is “low” the  inductive impedance is quite small: 
 

1jωL     (almost a short circuit!) 
 

And, the capacitive impedance (if the frequency is low) is quite large: 
 

1j
ωC

−         (almost an open circuit!) 

 
Thus, a low-frequency approximation of our wire is thus: 
 
  
 
 
 
 
 
Which leads to our original KVL and KCL conclusion: 
 

1 2 1 2V V I I= =  

1V
+

−
2V
+

−

1I
2I
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Parasitics are a problem at 
“high” frequencies 

 
Thus, as our signal frequency increases, the we often find that the “frequency 
response” ( )G ω  will in reality be different from that predicted by our circuit 
model—unless explicit parasitics are considered in that model. 
 
As a result, the response ( )G ω  may vary from our expectations as the signal 
frequency increases! 
 

ω  

( )G ω  

expected 
measured 
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Frequency Bands 
  
For frequencies in the kilohertz (audio band) of megahertz (video band), 
parasitics are generally not a problem. 
 
However, as we move into the 100’s of megahertz, or gigahertz (RF and 
microwave bands), the effects of parasitic inductance and capacitance are not 
only significant—they’re unavoidable!   
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Impedance and  
Admittance Parameters 

 
Say we wish to connect the output of one circuit to the input of another . 
 
 
 
 
 
 
 
 
 
 
The terms “input” and “output” tells us that we wish for signal energy to flow 
from the output circuit to the input circuit.   
 

Circuit  
#1 

Circuit 
#2 

output 
port 

input 
port 
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Energy flows from source to load 
 
 
In this case, the first circuit is the source, and the second circuit is the load. 
 
 
 
 
 
 
 
 
 
 
Each of these two circuits may be quite complex, but we can always simply this 
problem by using equivalent circuits. 
 

Circuit 
#1 

(source) 

Circuit 
#2 

(load) 
POWER 
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Load is the input impedance 
 
For example, if we assume time-harmonic signals (i.e., eigen functions!), the load 
can be modeled as a simple lumped impedance , with a complex value equal to the 
input impedance of the circuit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Circuit 
#2 

(load) 
inV
+

−
 

inI  

in
in

in

VZ
I

=  

L inZ Z=
 

inV
+

−
 

inI  

in in inV Z I=  
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Equivalent Circuits 
 
The source circuit can likewise be modeled using either a Thevenin’s or Norton’s 
equivalent.  
 
 
 
This equivalent circuit can be determined 
by first evaluating (or measuring) the 
open-circuit output voltage oc

outV : 
 
 
 
 
 
 
And likewise evaluating (or measuring) 
the short-circuit output current sc

outI : 
 
 
 
 
 

oc
outV

+

−

 

0outI =  

Circuit 
#1 

(source) 

0outV

+

−

=  

sc
outI  

Circuit 
#1 

(source) 
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Thevenin’s  
 
From these two values (  and oc sc

out outV I ) we can determine the Thevenin’s 
equivalent source: 
 

oc
oc out

g out g sc
out

VV V Z
I

= =  

 
 
 

 
 
 
 
 
 

out g g out

g out
out

g

V V Z I

V V
I

Z

= −

−
=

 
+

−
 Vg 

Zg 

outV

+

−

 

outI  
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Norton’s 
 
Or, we could use a Norton’s equivalent circuit: 
 

oc
sc out

g out g sc
out

VI I Z
I

= =  

 
 
 
 
 
 

Ig 
Zg 

outV

+

−

 

outI  

( )

out g out g

out g out g

I I V Z

V I I Z

= −

= −
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Circuit Model 
 

Thus, the 
entire circuit: 

 
 
 
 
 
 

 
 
 

Can be modeled 
with equivalent 

circuits as: 
 
 
 
Please note again that we have assumed a time harmonic source, such that all 
the values in the circuit above (Vg, Zg, I, V, ZL) are complex (i.e., they have a 
magnitude and phase). 

Circuit 
#1 

(source) 

Circuit 
#2 

(load) 
V
+

−

 

I  

+

−
 Vg 

Zg 

V
+

−

 

I  

LZ  
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Two-Port circuits 
 
 
Q: But, circuits like filters and amplifiers are two-port devices, they have both 
an input and an output.  How do we characterize a two-port device? 
 
A:  Indeed, many important components are two-port circuits.    
 
For these devices, the  signal power enters one port (i.e., the input) and exits 
the other (the output).   
 
 
 
 
 
 
 
 
 

Input 
Port 1V

+

−
 Output 

Port 
 

2V
+

−
 

2I  1I  
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Between source and load 
 
These  two-port circuits typically do something to alter the signal as it passes 
from input to output (e.g., filters it, amplifies it, attenuates it).    
 
We can thus assume that a source is connected to the input port, and that a 
load is connected to the output port. 
 
 
 
 
 
 
 
 
 

+

−
 Vg 

Zg 

1V
+

−

 I  LZ  
 

2V
+

−

 

I1 I2 

Two-Port 
Circuit 
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How to characterize? 
 

Again, the source circuit may be quite complex, consisting of 
many  components.  However, at least one of these components 
must be a source of  energy. 

 
 
Likewise, the load circuit might be quite complex, consisting 
of many  components.  However, at least one of these 
components must be a sink of  energy.  
 
 
Q: But what about the two-port circuit in the middle?  How do we characterize 
it? 
 
A: A linear two-port circuit is fully characterized by just four impedance 
parameters!  
 
 
 
 
 
 
 

 

 

 

1I  

1V
+

−
 

2-port 
 

Circuit 
2V
+

−
 

2I  
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Do this little experiment 
 
Note that inside the “blue box” there could be anything from a very simple 
linear circuit to a very large and complex linear  system. 
 
Now, say there exists a non-zero current at input port 1 (i.e., 1 0I ≠ ), while the 
current at port 2 is known to be zero (i.e., 2 0I = ).   
 
 
 
 
 
 
 
 
 
Say we measure/determine the current at port 1 (i.e., determine 1I ),  and we 
then measure/determine the voltage at the port 2 plane (i.e., determine 2V ).   
 

1I  

2V
+

−
 1V

+

−
 

2 0I =  

2-port 
 

Circuit 
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Impedance parameters 
 
The complex ratio between 2 1 and V I  is know as the trans-impedance 
parameter Z21: 

( ) ( )
( )

2
21

1

V
Z

I
=

ω
ω

ω
 

 
Note this trans-impedance parameter is the Eigen value of the linear operator 
relating current ( )1i t  to voltage ( )2v t : 
 

( ) ( ){ }2 1v t i t=L                ( ) ( ) ( )2 21 1V G I=ω ω ω  

 
Thus: 

( ) ( )21 21G Z=ω ω  
 
Likewise, the complex ratio between 1 1and V I  is the trans-impedance 
parameter Z11 : 

( ) ( )
( )

1
11

1

V
Z

I
=

ω
ω

ω
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A second experiment 
 
Now consider the opposite situation, where there exists a non-zero current at 
port 2 (i.e., 2 0I ≠ ), while the current at port 1 is known to be zero (i.e., 2 0I = ).   
 

 
 
 
 
 
 
The result is two more impedance parameters: 
 

( ) ( )
( )

1
12

2

V
Z

I
=

ω
ω

ω
                ( ) ( )

( )
2

22
2

V
Z

I
=

ω
ω

ω
 

 
Thus, more generally, the ratio of the current into port n  and the voltage at 
port m is: 
 

        (given that  0  for  )m
mn k

n

VZ I k n
I

= = ≠  

2I  

2V
+

−
 1V

+

−
 

1 0I =  

2-port 
 

Circuit 
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 Open circuits enforce I=0 
 
 
 
 
 
 
 
A:  Place an open circuit at that port! 

 
Placing an open at a port (and it must be at the port!) enforces the 
condition that 0I = . 
 
 
Now, we can thus equivalently state the definition of trans-impedance as:  
 
 

        (given that port  is )m
mn

n

VZ k n
I

= ≠ open-circuited  

 
 

 

Q:  But how do we ensure that 
one port current is zero ? 
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What’s the point? 
 
 
 
 
 
 
 
 
A:  OK, say that neither port is open-circuited, such that we have currents 
simultaneously on both of the two ports of our device.   

 
Since the device is linear, the voltage at one port is due to both port currents.  
 
This voltage is simply the coherent sum of the voltage at that port due to each 
of the two currents! 
 
Specifically, the voltage at each port can is: 
 

1 11 1 12 2

2 21 1 22 2

V Z I Z I

V Z I Z I

= +

= +

 

Q: As impossible as it sounds, this handout is even 
more pointless than all your previous efforts.  Why 
are we studying this? After all, what is the 
likelihood that a device will have an open circuit on 
one of its ports?!   
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They’re a function of frequency! 
 
 
Thus, these four impedance parameters completely characterizes a linear, 2 -
port device.   
 
Effectively, these impedance parameters describes a 2-port device the way 
that LZ  describes a single-port device (e.g., a load)! 
 
 

But beware! The values of the impedance matrix for a particular 
device or circuit, just like LZ , are frequency dependent!   
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A complete equivalent circuit 
 
Now, we can use our equivalent circuits to model this system: 
 
 
 
 
 
 
 
 
 
 
 
Note in this circuit there are 4 unknown values—two voltages (V1 and V2), and 
two currents (I1 and I2).   
 

 Our job is to determine these 4 unknown values! 
 

+

−
 Vg 

Zg 

1V
+

−

 I  LZ  
 

2V
+

−

 

I1 I2 

1 11 1 12 2

2 21 1 22 2

V Z I Z I

V Z I Z I

= +

= +
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Let’s do some algebra! 
 
Let’s begin by looking at the source, we can determine from KVL that: 
 
 

1 1g gV Z I V− =  
 

And so with a bit of algebra: 
 

1
1

g

g

V V
I

Z
−

=           ( look, Ohm’s Law!) 

 
 
Now let’s look at our two-port circuit.  If we know the impedance matrix (i.e., all 
four trans-impedance parameters), then: 
 
 

1 11 1 12 2

2 21 1 22 2

V Z I Z I

V Z I Z I

= +

= +
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Watch the minus sign! 
 
Finally, for the load: 

2
2

L

VI
Z

= −  

 
 
 
 

 
A:  Be very careful with the notation.   
 
Current I2 is defined as positive when it is flowing into the two port circuit.  
This is the notation required for the impedance matrix.  
 
Thus, positive current I2 is flowing out of the load impedance—the opposite 
convention to Ohm’s Law.   
 
This is why the minus sign is required. 
 

 

Q: Are you sure this is 
correct? I don’t recall 
there being a minus 
sign in Ohm’s Law. 
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A very good thing 
 
Now let’s take stock of our results. Notice that we have compiled four 
independent equations, involving our four unknown values: 
 

1
1

2
2

1 11 1 12 2

2 21 1 22 2

g

g

L

V V
I

Z

VI
Z

V Z I Z I

V Z I Z I

−
=

= −

= +

= +

   

 
 

( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

22 21
1 2

11 22 12 21 11 22 12 21

11 22 12 21 21
1 2

11 22 12 21 11 22 12 21

L
g g

g L g L

L L
g g

g L g L

Z Z ZI V I V
Z Z Z Z Z Z Z Z Z Z Z Z

Z Z Z Z Z Z ZV V V V
Z Z Z Z Z Z Z Z Z Z Z Z

+
= = −

+ + − + + −

+ −
= =

+ + − + + −

 

 

Q: Four equations and four 
unknowns! That sounds like 
a very good thing! 

A: It is! We can apply a bit of 
algebra and solve for the unknown 
currents and voltages: 
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Admittance Parameters 
 
Q:  Are impedance parameters the only way to characterize a 2-port linear 
circuit? 
 
A:  Hardly!  Another method uses admittance parameters. 
 
The elements of the Admittance Matrix are the trans-admittance parameters 

mnY , defined as: 
 
 

        (given that   0  for  )m
mn k

n

IY V k n
V

= = ≠  

 
 
Note here that the voltage at one port must be equal to zero.  We can ensure 
that by simply placing a short circuit at the zero-voltage port!     
 
 

Note that 1mn mnY Z≠ !  
 

 
 

 

1I  

2 0V
+

=
−

 1V
+

−
 

2I  

2-port 
 

Circuit 



 

1/31/2011 Impedance and Admittance  Parameters lecture 22/22 

Jim Stiles The Univ. of Kansas Dept. of EECS 

Short circuits enforce V=0 
 
Now, we can  equivalently state the definition of trans-admittance as:  
 
 

        (given that all ports  are )m
mn

n

VY k n
I

= ≠ short -circuited  

 
 
Just as with the trans-impedance values, we can use the trans-admittance 
values to evaluate general circuit problems, where none of the ports have zero 
voltage.  
 
Since the device is linear, the current at any one port due to all the port 
currents is simply the coherent sum of the currents at that port due to each of 
the port voltages! 
 

1 11 1 12 2

2 21 1 22 2

I Y V Y V

I Y V Y V

= +

= +
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We actually can find g(t) ! 
 
Now, let’s express this result using our knowledge of linear circuit theory! 
 
Recall, the output ( )outv t of a linear device can be determined by convolving its 
input ( )inv t  with the device impulse response ( )g t : 
 

( ) ( ) ( )
t

out inv t g t t v t dt
−∞

′ ′ ′= −∫  

 
Q: Yikes! What is the impulse response of this ideal amp?  How can we 
determine it? 
 
A:  It’s actually quite simple!  
 
Remember, the impulse response of linear circuit is just the output that results 
when the input is an impulse function ( )δ t . 
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Every function an Eigen function 
 
 
Since the output of an ideal amplifier is just the input multiplied by voA , we 
conclude if ( ) ( )inv t δ t= : 
 

( ) ( ) ( )out vog vt t A δ t= =  
 
Thus: 

( ) ( ) ( )

( ) ( )

( ) ( )

( )

t

out in

t

vo in

t

vo in

vo in

v t g t t v t dt

A δ t t v t dt

A δ t t v t dt

A v t

−∞

−∞

−∞

′ ′ ′= −

′ ′ ′= −

′ ′ ′= −

=

∫

∫

∫

 

 
  Any and every function ( )inv t  is an Eigen function of an ideal amplifier!! 
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And now the Eigen value 
 
Now, we can determine the Eigen value of this linear operator relating input to 
output: 
 

( ) ( ){ }out inv vt t=L  

 
 
Recall this Eigen value is found from the Fourier transform of the impulse 
response: 
 

( ) ( )

( )

0

0

jωt

jωt
vo

vo
j

vo

G ω h t e dt

A δ t e dt

A j
A e

∞
−

−∞
∞

−

−∞

=

=

= +

=

∫

∫  

 
 
This result, although simple, has an interesting interpretation…   
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DC to daylight 
 
…it means that the amplifier exhibits gain of Avo for sinusoidal signals of any 
and all frequencies!   
 
 
 
 
 
 
 
 
 
 
 
 
BUT, there is one big problem with an ideal amplifier: 
 

They are impossible to build!! 
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Real amplifier have finite bandwidths 
 
The ideal amplifier has a frequency response of ( ) voG ω A= .  

 
 Note this means that the amplifier gain is Avo for all frequencies 0 ω< < ∞   
(D.C. to daylight!).   
 
The bandwidth of the ideal amplifier is therefore infinite! 
 
* Since every electronic device will exhibit some amount of inductance, 
capacitance, and resistance, every device will have a finite bandwidth. 
 
* In other words, there will be frequencies ω where the device does not 
work! 
 
* From the standpoint of an amplifier, “not working” means ( ) voG ω A  (i.e., 

low gain). 
 

   Amplifiers therefore have finite bandwidths. 
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Amplifier bandwidth 
 
There is a range of frequencies ω  between  and L Hω ω  where the gain will 
(approximately) be Avo.   
 
For frequencies outside this range, the gain will typically be small (i.e. 
( ) voG ω A ): 

( )    ,
vo L H

vo L H

A ω ω ωG ω
A ω ω ω ω

⎧ ≈ < <⎪= ⎨ < >⎪⎩
 

 
The width of this frequency range is called the amplifier bandwidth: 
 

  (radians/sec)
     (cycles/sec)

H L

L H

Bandwidth ω ω
f f

−

−
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Wideband is desirable 
 
One result of a finite bandwidth is that the amplifier impulse response is not an 
impulse function ! 
 

( ) ( ) ( )jωt
voh t H ω e dt A δ t

∞
+

−∞

= ≠∫  

 
therefore generally speaking: 
 

( ) ( )out vo inv t A v t≠  !! 
 

However, if an input signal spectrum ( )inV ω  lies completely within the amplifier 
bandwidth, then we find that will (approximately) behave like an ideal amplifier: 
 
 

( ) ( )out vo inv t A v t≅     if  ( )inV ω  is within the amplifier bandwidth 
 
 

As a result, maximizing the bandwidth of an amplifier is a typically and 
important design goal! 
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Amplifier Gain  
 
One interesting characteristic of an amplifier is that it is a unilateral device—it 
makes a big difference which end you use as the input! 
 
Most passive linear circuits (e.g., using only R, L and C) are reciprocal.  With 
respect to a 2-port device, reciprocity means: 
 

( ) ( )12 21Z Z=ω ω        and       ( ) ( )12 21Y Y=ω ω  
 

For example, consider these two open-circuit voltage measurements: 
 
 

 
 
 
 
 
 

1I  

2 21 1V Z I
+

=
−

 1V
+

−
 

 

2-port 
 

Circuit 

2I  

2V
+

−
 1 12 2V Z I

+
=

−
 

2-port 
 

Circuit 
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Most linear circuits are reciprocal… 
 
If this linear two-port circuit is also reciprocal, then when the two currents 1I  
and 2I  are equal, so too will be the resulting open-circuit voltages 1V  and 2V ! 
 
Thus, a reciprocal 2-port circuit will have the property: 
 

1 2V V=      when     1 2I I=  
 

Note this would likewise mean that: 
 

2 1

1 2

V V
I I

=  

 
And since (because of the open-circuits!): 
 

2 21 1V Z I=             and         1 12 2V Z I=  
 

We can conclude from this “experiment” that these trans-impedance 
parameters of a reciprocal 2-port device are equal: 
 

( ) ( )12 21Z Z=ω ω  
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…but amplifiers are not!  
 
Contrast this with an amplifier. 
 
A current on the input port will indeed produce a voltage on an open-circuited 
output: 
 
 
 
 
 
 
 
 
However, amplifiers are not reciprocal. Placing the same current at the output 
will not create the equal voltage on the input—in fact, it will produce no voltage 
at all! 
 
 
 
 
 
 

1I  

2 21 1V Z I
+
=

−

 1V
+

−

 

 

2I  

1 0V
+
=

−

 
2V
+

−
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Amps are unilateral: an input and output 
 
Since for this open-circuited input port we know that: 
 

1
12

2

VZ
I

= , 

 
the fact that voltage produced at the input port is zero ( 1 0V = ) means the 
trans-impedance parameter 12Z  is likewise zero (or nearly so) for unilateral 
amplifiers: 
 

( )12 0Z ω =        (for  amplifiers) 
 

 
Thus, the two equations describing an amplifier (a two-port device) simplify 
nicely.   
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Here’s the simplification 
 
Beginning with: 

1 11 1 12 2

2 21 1 22 2

V Z I Z I

V Z I Z I

= +

= +

 

 
Now since 12 0Z = , we find: 
 

1 11 1

2 21 1 22 2

V Z I

V Z I Z I

=

= +

 

 
Q:  Gee; I’m sort of unimpressed by this simplification—I was hoping the result 
would be a little more—simple. 
 
A:  Actually, the two equations above represent a tremendous simplification—it 
completely decouples the input port from the output, and it allows us to assign 
very real physical interpretations to the remaining impedance parameters! 
 
To see all these benefits (try to remain calm), we will now make a few changes in 
the notation. 
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A slight change in notation 
 
First we explicitly denote voltage 1V  as inV , and likewise 2V  as outV  (the same with 
currents I).   
 
Additionally, we change the current definition at the output port, reversing the 
direction of positive current as flowing outward from the output port. Thus: 
 

2outI I= −  
 
And so, a tidy summary: 
 
 
 

 
 
 
 
 

11

21 22

in in

out in out

V Z I

V Z I Z I

=

= −

 

inI  

outV
+

−

 inV
+

−

 

outI  
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The input is independent of the output! 
 
From this summary, it is evident that the relationship between the input current 
and input voltage is determined by impedance parameter 11Z —and 11Z  only: 

 

11
in

in

VZ
I

=  

 
Thus, the impedance parameter 11Z  is known as the input impedance inZ  of an 
(unilateral!) amplifier: 

( ) ( )
( ) ( )11

in
in

in

V ω
Z ω Z ω

I ω
=  
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The open-circuit output voltage  
 
Now, consider the case where the output port of the amplifier is open-circuited 
( 0outI = ): 
 

 
 
 
 
 
 
 
 

The (open-circuit) output voltage is therefore simply: 
 

( )
21 22

21 22

21

0
out in out

in

in

V Z I Z I
Z I Z
Z I

= −

= −

=

 

 
The open-circuit output voltage is thus proportional to the input current.   
 

inI  

oc
outV
+

−

 inV
+

−

 

0outI =  
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Open-circuit trans-impedance 
 
The proportionality constant is the impedance parameter 21Z —a value otherwise 
known as the open-circuit trans-impedance mZ : 
 

( ) ( )
( ) ( )21

oc
out

m
in

V ω
Z ω Z ω

I ω
=  

 
 
Thus, an (unilateral!) amplifier can be described as: 
 

22

in in in

out m in out

V Z I

V Z I Z I

=

= −
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Short-circuit output current 
 
Q:  What about impedance parameter 22Z ; does it have any physical meaning? 
 
A:  It sure does! 
 
Consider now the result of short-circuiting the amplifier output ( 0outV∴ = ) : 
 
 
 

 
 
 
 
 

Since 0outV = : 

220 sc
out m in outV Z I Z I= = −  

 
we can quickly determine the short-circuit output current: 

 

22

sc m in
out

Z II
Z

=  

inI  

0outV
+

=

−

 inV
+

−

 

sc
outI  
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The output impedance 
 
Q:  I’m not seeing the significance of this result!? 
 
A:  Let’s rearrange to determine  22Z : 
 

22
m in

sc
out

Z IZ
I

=  

 
Note the numerator—it is the open-circuit voltage oc

out m inV Z I= , and so: 
 

22

oc
m in out

sc sc
out out

Z I VZ
I I

= =  

 
Of course, you remember that the ratio of the open-circuit voltage to short-
circuit current is the output impedance of a source: 
 

22

oc
out

out sc
out

VZ Z
I

=  
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These equations look familiar! 
 
Thus, the output impedance of an (unilateral) amplifier is the impedance 
parameter 22Z , and so: 

in in in

out m in out out

V Z I

V Z I Z I

=

= −

 

 
Q: It’s déjà vu all over again; haven’t we seen equations like this before? 
 
A: Yes!  Recall the first (i.e., input) equation: 
 

in in inV Z I=  
 
 is that of a simple load impedance: 
 
 
 
 
 
 
 

L inZ Z=
 

inV
+

−
 

inI  

in in inV Z I=  



 

2/4/2011 Amplifier Gain lecture 13/27 

Jim Stiles The Univ. of Kansas Dept. of EECS 

Looks like a Thevenin’s source 
 
And the second (i.e., output) amplifier equation: 
 

out m in out outV Z I Z I= −  
 
 is of the form of a Thevenin’s source: 
 
where: 
 

g m inV Z I=          and          g outZ Z=  
 

out g g outV V Z I= −  +

−
 gV  

gZ  

outV

+

−

 

outI  
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An equivalent circuit model 
 
We can combine these two observations to form an equivalent circuit model of 
an (unilateral) amplifier: 
 
 
 
 
 
 
 
 
 
 

 

in in in

out m in out out

V Z I

V Z I Z I

=

= −

 

 
Note in this model, the output of the amp is a dependent Thevenin’s source—
dependent on the input current! 
 

inZ  
 

inV
+

−
 

inI  

+

−
 

m inZ I  

outZ  

outV
+

−

 

outI  
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Let’s make the model more useful 
 
Q:  So,  do we always use this equivalent circuit to model an amplifier? 
 
A:  Um, actually no. 
 
The truth is that we EE’s rarely use this equivalent circuit (not that there’s 
anything wrong with it!).    
 
Instead, the equivalent circuit we use involves a slight modification of the 
model above. 
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Relate the input voltage to output voltage 
 
To see this modification, we insert the first (i.e., input) equation, expressed as: 
 

in
in

in

VI
Z

=  

 
into the second (i.e., output) equation: 
 

out m in out out

m
in out out

in

V Z I Z I
Z V Z I
Z

= −

⎛ ⎞
= −⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
Thus, the open-circuit output voltage can alternatively be expressed in terms 
of the input voltage! 
 

oc m
out in

in

ZV V
Z

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
Note the ratio m inZ Z  is unitless (a coefficient!).   
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Open-circuit voltage gain 
 
This coefficient is known as the open-circuit voltage gain voA  of an amplifier: 
 
 

( ) 21

11

oc
mout

vo
in in

ZV ZA
V Z Z

= =ω  

 
 
 
The open-circuit voltage gain  ( )voA ω  is perhaps the most important of all 
amplifier parameters.   
 
To see why, consider the amplifier equations in terms of this voltage gain: 
 
 

in in in

out vo in out out

V Z I

V A V Z I

=

= −
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A more “useful” equivalent circuit 
 
The equivalent circuit  described by these equations is: 
 
 

 
 
 
 
 
 
 
 
 

In this circuit model, the output Thevenin’s source is again dependent—but now 
it’s dependent on the input voltage! 
 
Thus, in this model, the input voltage and output voltage are more directly 
related. 

 

inZ  
 

inV
+

−
 

inI  

+

−
 

vo inA V  

outZ  

outV
+

−

 

outI  
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Now let’s consider admittance parameters 
 
Q:   Are these the only two was to model a unilateral amplifier? 
 
A:  Hardly! Consider now admittance parameters. 
 
A voltage on the input port of an amplifier will indeed produce a short-circuit 
output current: 
 
 
 
 
 
 
 
 
 
 

1I  

2 21 1I Y V=  1V
+

−
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The unilateral amplifier 
 
However, since amplifiers are not reciprocal, placing the same voltage at the 
output will not create the equal current at the input—in fact, it will produce no 
current at all! 
 
 
 
 
 
 
 
 
 
 
 
This again shows that amplifiers are unilateral devices, and so we find that the 
trans-admittance parameter 12Y  is zero: 
 

( )12 0Y ω =        (for  amplifiers) 
 

2I  

1 0I =  
2V
+

−
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In terms of our new notation 
 
Thus, the two equations using admittance parameters simplify to: 
 

1 11 1

2 21 1 22 2

I Y V

I Y V Y V

=

= +

 

 
with the same definitions of input and output current/voltage used previously: 
 
 
 

 
 
 
 
 

 
 

11

21 22

in in

out in out

I Y V

I Y V Y V

=

= − −

 

inI  

outV
+

−

 inV
+

−

 

outI  
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Input admittance 
 
As with impedance parameters, it is apparent from this result that the input 
port is independent from the output. 
 
Specifically, an input admittance can be defined as: 
 

( ) ( )
( ) ( )11

in
in

in

I ω
Y ω Y ω

V ω
=  

 
Note that the input admittance of an amplifier is simply the inverse of the 
input impedance: 

( ) ( )
( ) ( )

1in
in

in in

I ω
Y ω

V ω Z ω
= =  

 
And from this we can conclude that for a unilateral amplifier (but only because 
it’s unilateral!): 
 

11
11

1Y
Z

=  
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Looks like a Norton’s source! 
 
Likewise, the second amplifier equation:  
 

21 22out in outI Y V Y V= − −  
 
 
 is of the form of a Norton’s source: 
 
 
 
 
 
 
 
 
 
 
where: 

21g inI Y V= −          and          
22

1
gZ

Y
=  

 

out g out gI I V Z= −  
gI  gZ  

outV

+

−

 

outI  
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Short-circuit trans-admittance 
 
More specifically, we can define a short-circuit trans-admittance: 
 

21mY Y−  
 
 
and an output impedance: 

22

1
outZ

Y
 

 
 
so that the amplifier equations are now: 
 
 

in in in

out m in out out

I V Z

I Y V V Z

=

= −
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Yet another equivalent circuit model 
 
The equivalent circuit described by these equations is: 

 
 
 
 
 
 
 
 
 
 
 
Note in this model, the output of the amp is a dependent Norton’s source—
dependent on the input voltage. 
 
However, this particular amplifier model is likewise seldom 
used. 
 

inZ  
 

inV
+

−
 

inI  

m inY V  outZ  
outV
+

−

 

outI  
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Short-circuit current gain 
 
Instead, we again insert the input equation: 
 

11

in
in

IV
Y

=  

 
Into the output equation: 

21

21

11

out in out out

in out out

I Y V V Z
Y I V Z
Y

= − −

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠

 

 
Note the ratio 21 11Y Y−  is unitless (a coefficient!).   
 
This coefficient is known as the short-circuit current gain isA  of an amplifier: 
 
 

( ) 21

11 11

sc
mout

is
in

YI YA
I Y Y

= = −ω  
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A useful equivalent circuit model 
 
Thus, we can also express the amplifier port equations as: 
 

in in in

out is in out out

I V Z

I A I V Z

=

= −
 

 
So, the equivalent circuit described by these equations is the last of four we 
shall consider: 
 
 

 
 
 
 
 
 

In this circuit model, the output Norton’s source is again dependent—but now 
it’s dependent on the input current! 
 
Thus, in this model, the input current and output current are more directly 
related. 

inZ  
 

inV
+

−
 

inI  

is inA I  outZ  
outV
+

−

 

outI  
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Circuit Models for Amplifiers  
 
The two most important amplifier circuit models explicitly use the open-circuit 
voltage gain voA : 
 
 
 
 
 
 
 
 
 
And the short-circuit current gain isA : 
 
 
 
 
 
 
 
 

inZ  
 

inV
+

−
 

inI  

is inA I  
outZ

outV
+

−

outI  

inZ  
 

inV
+

−
 

inI  

vo inA V  

outZ

outV
+

−

outI  

+

−
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Just three values describe all! 
 
In addition, each equivalent circuit model uses the same two impedance values—
the input impedance inZ  and output impedance outZ . 
 
Q:  So what are these models good for? 
 
A:  Say we wish to analyze a circuit in which an amplifier is but one component.   
 
Instead of needing to analyze 
the entire amplifier circuit, we 
can  analyze the circuit using the 
(far) simpler equivalent circuit 
model. 
 
For example, consider this audio 
amplifier design: 
 

inV
+

−

 outV
+

−
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This might be on the final 
 
Say we wish to connect a source (e.g., microphone) to its input, and a load (e.g., 
speaker) to its output: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let’s say on the EECS 412 final, I ask you to determine outV  in the circuit above. 

1L  
1R  

+
−

 2L  2R  
gV  outV

+

−
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I’m not quite the jerk I appear to be! 
 

Q: Yikes! How could we possibly analyze this circuit on an exam—it 
would take way too much time (not to mention way too many pages of 
work)? 
 
A:  Perhaps, but let’s say that I also provide you with the amplifier 
input impedance inZ , output impedance outZ , and open-circuit voltage 
gain  voA . 

 
You thus know everything there is to know about the amplifier! 
 
Just replace the amplifier with its equivalent circuit: 

2L  2R  outV
+

−
 

inZ  
 vo inA V  

outZ  

1L  
1R  

+
−

 gV  inV
+

−
 +

−
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The relationship between  
input and output voltages 

 
From input circuit, we can conclude (with a little help from voltage division): 
 

1 1

in
in g

in

ZV V
R jωL Z
⎛ ⎞

= ⎜ ⎟
+ +⎝ ⎠

 

 
And the output circuit is likewise: 
 

2 2

2 2
out vo in

out

R jωL
V A V

Z R jωL
⎛ ⎞
⎜ ⎟=
⎜ ⎟+⎝ ⎠

 

 
where: 

2 2
2 2

2 2

jω R LR jωL
R jωL

=
+
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The output is not open-circuited! 
 
Q: Wait! I thought we could determine the output voltage from the input 
voltage by simply multiplying by the voltage gain voA . I am certain that you told 
us: 

oc
out vo inV A V=  

 
A: I did tell you that!  And this expression is exactly correct. 
 
However, the voltage oc

outV  is the open-circuit output voltage of the amplifier—in 
this circuit (like most amplifier circuits!), the output is not open! 
 
Hence oc

out outV V≠ , and so : 
 

2 2

2 2

2 2

2 2

out vo in
out

oc
out

out
oc

out

R jωL
V A V

Z R jωL

R jωL
V

Z R jωL
V

⎛ ⎞
⎜ ⎟=
⎜ ⎟+⎝ ⎠

⎛ ⎞
⎜ ⎟=
⎜ ⎟+⎝ ⎠

≠
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We can define a voltage gain 
 
Now, combining the two expressions, we have our answer: 
 

( )

2 2

1 1 2 2

2 2

1 1 2 2 2 2

in
out g vo

in out

in
vo g

in out

R jωLZV V A
R jωL Z Z R jωL

Z jω R LA V
R jωL Z Z R jωL jω R L

⎛ ⎞⎛ ⎞
⎜ ⎟= ⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠
⎛ ⎞⎛ ⎞
⎜ ⎟= ⎜ ⎟ ⎜ ⎟+ + + +⎝ ⎠ ⎝ ⎠

 

 
Now, be aware that we can (and often do!) define a voltage gain vA , a value that 
is different from the open-circuit voltage gain of the amplifier. 
 
For instance, in the above circuit example we could define a voltage gain as the 
ratio of the input voltage inV  and the output voltage outV : 
 

( )
2 2 2 2

2 2 2 2 2 2

out
v vo vo

in out out

R jωLV jω R LA A A
V Z R jωL Z R jωL jω R L

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= =

⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠
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Or we can define a different gain 
 
Or, we could alternatively define voltage gain as the ratio of the source voltage 

gV  and the output voltage outV : 
 

( )
2 2

1 1 2 2 2 2

out in
v vo

g in out

V Z jω R LA A
V R jωL Z Z R jωL jω R L

⎛ ⎞⎛ ⎞
⎜ ⎟= ⎜ ⎟ ⎜ ⎟+ + + +⎝ ⎠ ⎝ ⎠

 

 
Q: Yikes! Which result is correct; which voltage gain is “the” voltage gain? 
 
A: Both are! 
 
We can define a voltage gain vA  in any manner that is useful to us.  However, we 
must make this definition explicit—precisely what two voltages are involved in 
the definition? 
 

 No voltage gain vA  is “the” voltage gain! 
 
Note that the open-circuit voltage gain voA  is a parameter of the amplifier—and 
of the amplifier only! 
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The open-circuit gain is the amplifier gain 
 
 
Contrast voA  to the two voltage gains defined above (i.e., out inV V  and out gV V ).   
 
In each case, the result—of course—depends on amplifier parameters 
 ( , ,vo in outA Z Z ).  
 
However, the results likewise depend on the devices (source and load) attached 
to the amplifier (e.g., 1 1 2 2, , ,L R L R ). 
 

 The only amplifier voltage gain is its open-circuit voltage gain voA ! 
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The low-frequency model 
 
Now, let’s switch gears and consider low-frequency (e.g., audio and video) 
applications.  
 
At these frequencies, parasitic elements are typically too small to have any 
practical significance.   
 
Additionally, low-frequency  circuits frequently employ no reactive circuit 
elements (no capacitor or inductors). 
 
As a result, we find that the input and output impedances exhibit almost no 
imaginary (i.e., reactive) components: 
 

( )

( )

0

0

in in

out out

Z ω R j

Z ω R j

≅ +

≅ +
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We can express this in the time domain 
 
Likewise, the  voltage and current gains of the amplifier are (almost) purely 
real: 

( )

( )

0

0

vo vo

is is

A ω A j

A ω A j

≅ +

≅ +

 

 
Note that these real values can be positive or negative. 
 
The amplifier circuit models can thus be simplified—to the point that we can 
easily consider arbitrary time-domain signals (e.g., ( )inv t  or ( )outi t ): 
 
 
 
 
 
 
 
 
 
 

inR  
 

( )inv t
+

−

 

( )ini t  

( )is inA i t  

outR  
( )out tv
+

−

 

( )outi t  

inR  
 

( )inv t
+

−

 

( )ini t  

( )vo inA v t  

outR  

( )out tv
+

−

 

( )outi t  

+

−
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All real-valued 
 
For this case, we find that the (approximate) relationships between the input 
and output are that of an ideal amplifier: 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

t
oc
out vo in vo in

t
sc

out is in is in

v t A δ t t v t A v t

i t A δ t t i t A i t

−∞

−∞

′ ′= − =

′ ′= − =

∫

∫

 

 
Specifically, we find that for these low-frequency models: 
 

( )
( )

( )
( )

( )
( )

( )
( )

oc
in out

in out sc
in out

oc sc
out out

vo is
in in

v t v t
R R

i t i t

v t i t
A A

v t i t

= =

= =

 

 
One important caveat here; this “low-frequency” model is applicable only for 
input signals that are likewise low-frequency—the input signal spectrum must 
not extend beyond the amplifier bandwidth.  
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Voltage is referenced to ground potential 
 
Now one last topic. 
 
Frequently, both the input and output voltages are expressed with respect to 
ground potential, a situation expressed in the circuit model as: 
 
 
 
 
 
 
 
 
 
 
 
 

inR  
 

( )inv t
+

−

 

( )ini t

( )vo inA v t  

outR

( )out tv
+

−

 

( )outi t  

+

−
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You’ll often see this notation 
 
Now, two nodes at ground potential are two nodes that are connected together!  
Thus, an equivalent model to the one above is: 
 
 
 
 
 
 
 
 
 
 
Which is generally simplified to this model: 
 
 

inR  
 

( )inv t
+

−

 

( )ini t

( )vo inA v t  

outR

( )out tv
+

−

 

( )outi t  

+

−
 

inR  
 

( )inv t
+

−

 

( )ini t

( )vo inA v t  

outR
( )out tv
+

−

 

( )outi t  

+

−
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Current and Voltage Amplifiers 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A:  Any amplifier can be used as either a current amp or as a voltage amp.   
 
However, we will find that an amp that works well as one does not generally work 
well as the other!  Hence, we can in general classify amps as either voltage amps 
or current amps. 
 
 

 
Q: I’ll admit to being dog-gone confused.   
 
You say that every amplifier can be described equally 
well in terms of either its open-circuit voltage gain Avo, 
or its short-circuit current gain Ais.   
 
Yet, amps I have seen are denoted specifically as either 
a dad-gum current amplifier or a gul-darn voltage 
amplifier. 
 
Are voltage and current amplifiers separate devices, and 
if so, what are the differences between them? 
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Define a gain 
 
To see the difference we first need to provide some definitions.  
 
First, consider the following circuit: 
 
 
 
 
 
 
 
 
 
 
 
 

 
We define a voltage gain Av  as: 
 

( )
( )

out
v

s

v t
A

v t
 

 
 

 
A: NO!  Notice that the output of the amplifier is not open circuited.   
 

Q: Isn’t that just Avo
 ?? 

+ 
- 

Rs 

( )sv t  ( )outv t
+

−
 

( )ini t  ( )outi t

RL 
( )inv t
+

−
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This is what the model is for 
 
Likewise, the source voltage vs is not generally equal to the input voltage vin. 
 
We must use a circuit model to determine voltage gain Av .  
  
Although we can use either model, we will find it easier to analyze the voltage 
gain if we use the model with the dependent voltage source: 
 
 
 
 
 
 
 
 
 

+ 
- 

Rin 

Rout 

vo inA v  ( )sv t  + 
- 

Rs ( )ini t  

RL 

( )outi t

( )inv t
+

−

 ( )outv t
+

−
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The result 
 
Analyzing the input section of this circuit, we find: 
 

in
in s

s in

Rv v
R R
⎛ ⎞

= ⎜ ⎟
+⎝ ⎠

 

and analyzing the output: 
 

L
out vo in

out L

Rv A v
R R
⎛ ⎞

= ⎜ ⎟⎜ ⎟+⎝ ⎠
 

 
combining the two expressions we get: 
 

L in
out vo s

out L s in

R Rv A v
R R R R
⎛ ⎞ ⎛ ⎞

= ⎜ ⎟ ⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠
 

 
and therefore the voltage gain Av is: 

 
( )
( )

out L in
v vo

out L s ins

v t R RA A
R R R Rv t
⎛ ⎞ ⎛ ⎞

= ⎜ ⎟ ⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠
 

 

??? 
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How to maximize voltage gain 
 
Note in the above expression that the first and third product terms are limited: 
 

0 1      and     0 1  L in

out L s in

R R
R R R R
⎛ ⎞ ⎛ ⎞

≤ ≤ ≤ ≤⎜ ⎟ ⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠
 

 
We find that each of these terms will approach their maximum value (i.e., one) 
when: 
 

      and        out L in sR R R R  
 
Thus, if the input resistance is very large (>>Rs) and the output resistance is 
very small (<<RL), the voltage gain for this circuit will be maximized and have a 
value approximately equal to the open-circuit voltage gain! 
 
 

      iff     and   o vo s out L in sv A v R R R R≈  
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A good voltage amplifier 
 
 

 
Thus, we can infer three characteristics of a good voltage amplifier: 
 
 
 
 
 

1. Very large input resistance ( in sR R ). 
 

2. Very small output resistance ( out LR R ). 
 
3.  Large open-circuit voltage gain ( 1voA ). 
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Now for current gain 
 
Now let’s consider a second circuit: 
 
 
 
 

 
 
 
 
We define current gain Ai  as: 
 

( )
( )

out
i

s

i t
A

i t
 

 
Note that this gain is not equal to the short-circuit current gain Ais.  This 
current gain Ai  depends on the source and load resistances, as well as the 
amplifier parameters.   
 
Therefore, we must use a circuit model to determine current gain Ai .   
 

Rs RL ( )si t  

( )ini t  ( )outi t  

( )outv t
+

−
 

( )inv t
+

−
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Use the other model 
 
Although we can use either model, we will find it easier to analyze the current 
gain if we use the model with the dependent current source: 
 
 
 
 
 
 
 
 
 
Analyzing the input section, we can use current division to determine: 
 

s
in s

s in

Ri i
R R
⎛ ⎞

= ⎜ ⎟
+⎝ ⎠

 

 
We likewise can use current division to analyze the output section: 
 

out
out is in

out L

Ri A i
R R
⎛ ⎞

= ⎜ ⎟⎜ ⎟+⎝ ⎠
 

 

Rin Rout 
is inA i  

Rs RL ( )si t  

( )ini t  ( )outi t  

( )inv t
+

−

 ( )outv t
+

−
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How to maximize current gain 
 
Combining these results, we find that: 
 

out s
out is s

out L s in

R Ri A i
R R R R
⎛ ⎞ ⎛ ⎞

= ⎜ ⎟ ⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠
 

 
and therefore the current gain Ai is:  

 
( )
( )

o out s
i is

out L s ins

i t R RA A
R R R Ri t
⎛ ⎞ ⎛ ⎞

= ⎜ ⎟ ⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠
 

 
Note in the above expression that the first and third product terms are limited: 
 

0 1      and     0 1  out s

out L s in

R R
R R R R
⎛ ⎞ ⎛ ⎞

≤ ≤ ≤ ≤⎜ ⎟ ⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠
 

 
We find that each of these terms will approach their maximum value (i.e., one) 
when: 
 

      and        out L in sR R R R  
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The ideal current amp 
 
Thus, if the input resistance is very small (<<Rs) and the output resistance is 
very large (>>RL), the voltage gain for this circuit will be maximized and have a 
value approximately equal to the short-circuit current gain! 
 

      iff     and   out is s out L in si A i R R R R≈  
 

Thus, we can infer three characteristics of a good current amplifier: 
 
 
 

1. Very small input resistance ( siR R ). 
 

2. Very large output resistance ( o LR R ). 
 
3.  Large short-circuit current gain ( 1isA ). 

 
 
 
Note the ideal resistances are opposite to those of the ideal voltage 
amplifier! 
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You can trust ol’ Roy! 
 

 
  
 
 
 
 
 
 
 

 
 
 
 
 
 

 

It’s actually quite simple.   
 
An amplifier with low input resistance and high 
output resistance will typically  provide great 
current gain but lousy voltage gain. 
 
Conversely, an amplifier with high input 
resistance and low output resistance will 
typically make a great voltage amplifier but a 
dog-gone poor current amp. 
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Non-Linear Behavior 
of Amplifiers 

 
Note that the ideal amplifier transfer function: 
 

( ) ( )oc
out vo iv t A v t=  

 
is an equation of a line (with slope = Avo and y -intercept = 0). 
 
 
 
 
 
 
 
 
 
 
 
 
 

vout 

vin 

Avo > 0 
Avo < 0 
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The output voltage is limited 
 
This ideal transfer function implies that the output voltage can be very large, 
provided that the gain Avo and the input voltage vin  are large. 
 
However, we find in a “real” amplifier that there are limits on how large the 
output voltage can become.   
 
The transfer function of an amplifier is more accurately expressed as: 
 
 
 

( )  

( ) ( )   ( )   

 ( )   

in
in

in in
out vo in in

in
in

L v t L

v t A v t L v t L

L v t L

+ +

− +

− −

⎧ >
⎪
⎪⎪= < <⎨
⎪
⎪

<⎪⎩
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Amplifier saturation 
 
This expression is shown graphically as: 
 
 
This expression  (and graph) 
shows that electronic amplifiers 
have a maximum and minimum 
output voltage (L+ and L-).   

 
If the input voltage is either too 
large or too small (too negative), 
then the amplifier output voltage 
will be equal to either L+ or L- . 
 
If vout = L+ or vout =L- ,  we say the 
amplifier is in saturation (or 
compression). 
 

vout 

vin 

Avo 

in

vo

LL
A
+

+ =  

in

vo

LL
A
−

− =  

L+ 

L- 
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Make sure the input isn’t too large! 
 
Amplifier saturation occurs when the input voltage is greater than: 
 

in
in

vo

Lv L
A
+

+>  

 
or when the input voltage is less than: 
 

in
in

vo

Lv L
A
−

−<  

 
Often, we find that these voltage limits are symmetric, i.e.: 
 

   and    in inL L L L− + − += − = −  
 
For example, the output limits of an amplifier might be L+ = 15 V and L- = -15 V. 
 
However, we find that these limits are also often  asymmetric (e.g., L+ = +15 V 
and L- = +5 V). 
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Saturation: Who really cares? 
 
 
 
 
 
 
 
 
 
 
 
 
 

A:  Absolutely!  If an amplifier 
saturates—even momentarily—
the unavoidable result will be a 
distorted output signal. 

 

Q:  Why do we care if an amplifier 
saturates? Does it cause any problems, 
or otherwise result in  performance 
degradation?? 
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A distortion free example 
 
For example, consider a case where the input to an amplifier is a triangle wave: 
 
 
 
 
 
 
 
 
 
Since ( )in in

inL v t L− +< <  for all time t, the output signal will be within the limits L+ 
and L- for all time t, and thus the amplifier output will be vout (t) = Avo vin (t): 
 
 
 
 
 
 
 
 
 

vin (t) 

t 

inL+  

inL−  

vout (t) 

t 

L+  

L−  
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The input is too darn big! 
 
Consider now the case where the input signal is much larger, such that 

( )  and ( )in in
in inv t L v t L+ −> <  for some time t (e.g., the input triangle wave exceeds 

the voltage limits inL+  and inL−  some of the time): 
 
 
 
 
 
 
 
 
 
 
 

vin (t) 

t 

inL+  

inL−  

 

This is precisely the situation about 
which I earlier expressed caution.   
 
We now must experience the 
palpable agony of signal distortion! 
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Palpable agony 
 
 
 
 
 
 
 
 
 
 
 
 
Note that this output signal is not a triangle wave!   
 
For time t where ( )  and ( )in in

in inv t L v t L+ −> < , the value ( )vo inA v t  is greater than L+ 
and less than L-, respectively.   
 
Thus, the output voltage is limited to ( )  and ( )out outv t L v t L+ −= =  for these times. 
 
As a result, we find that output ( )outv t  does not equal ( )vo inA v t  —the output 
signal is distorted! 

vout (t) 

t 

L+  

L−  
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“Soft” Saturation 
 
In reality, the saturation 
voltages , , ,  and in inL L L L+ − + −  are 
not so precisely defined.   
 
The transition from the linear 
amplifier region to the 
saturation region is gradual, and 
cannot be unambiguously 
defined at a precise point. 

vout 

vin 

Avo 

in

vo

LL
A

+
+ =  

in

vo

LL
A

−
− =  

L+ 

L- 
vout(t) 

t 

L+  

L−  
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Yet another problem: DC offset 
 
Now for another non-linear problem! 
 
We will find that many amplifiers exhibit a DC offset (i.e., a DC bias) at their 
output.   
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

vout 

vin 

A  

Voff 
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How do we define gain? 
 
The output of these amplifiers can be expressed as: 
 

( ) ( )out in offv t A v t V= +  
 

where A  and Voff  are constants.   
 
It is evident that if the input is zero, the output voltage will not be (zero, that 
is)! 

i.e.,            if       0out inoffv V v= =  
 

 

Q: Yikes! How do we determine the gain of such an amplifier?  
 
If:         ( ) ( )out in offv t A v t V= +  

 
then what is: 

( ) ?????
( )

out

in

v t
v t

=  

 
The ratio of the output voltage to input voltage is not a constant! 
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Calculus: is there anything it can’t do? 
 
A: The gain of any amplifier can be defined more precisely using the derivative 
operator: 
 
 

out
vo

in

d vA
d v

 

 
 

 
Thus, for an amplifier with an output DC offset, we find the voltage gain to be: 
 
 

( )in offout
vo

in in

d Av Vd vA A
d v d v

+
= = =  

 
 
In other words, the gain of an amplifier is determined by the slope of the 
transfer function! 



 
  

 

2/8/2011 Non linear behavior of amps lecture.doc 13/16 

Jim Stiles The Univ. of Kansas Dept. of EECS 

This sort of makes sense! 
 
For an amplifier with no DC offset (i.e., o vo iv A v= ), it is easy to see that the gain 
is likewise determined from this definition: 
 

out vo in
vo vo

in in

d v d A vA A
d v d v

= = =  

 
 
 
 
 
 

 
 
 
 
 
 
 

 

Hey, hey! This definition makes sense if you think about it—
gain is the change of the output voltage with respect to a 
change at the input.   
 
For example, of small change invΔ  at the input will result in a 
change of vo inA vΔ  at the output.   
 
If Avo is large, this change at the output will be large!  
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Both problems collide 
 
OK, here’s another problem. 
 
The derivative of the transfer curve for real amplifiers will not be a constant.   
 
We find that the gain of a amplifier will often be dependent on the input 
voltage! 
 
The main reason for this is amplifier saturation.   
 
Consider again the transfer function of an amplifier that saturates: 
 
 

  

     

    

in
in

in in
out in off i

in
in

v LL

v Av V L v L

L v L

++

− +

− −

⎧ >⎪⎪⎪⎪⎪⎪⎪= + < <⎨⎪⎪⎪⎪⎪⎪ <⎪⎩
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Gain is a function of vin 
 
We find the gain of this amplifier by taking the derivative with respect to vin : 
 

  0

     

0     

in
in

in inout
vo in

in

in
in

v L

d vA A L v L
d v

v L

+

− +

−

⎧ >⎪⎪⎪⎪⎪⎪⎪= = < <⎨⎪⎪⎪⎪⎪⎪ <⎪⎩

 

 
Graphically, this result is: 
 

 
 

 
 
 
 
 
 
 
 
 

vin 

vo L+  

Voff 

L-  

vo out inA d v d v=  

inL+  inL−  



 
  

 

2/8/2011 Non linear behavior of amps lecture.doc 16/16 

Jim Stiles The Univ. of Kansas Dept. of EECS 

You’ll see this transfer function again! 
 
Thus, the gain of this amplifier when in saturation is zero. A change in the input 
voltage will result in no change on the output—the output voltage will simply be 

ov L±= .   
 
Again, the transition into saturation is gradual for real amplifiers.   
 

In fact, we will find that many of 
the amplifiers studied in this class 

have a transfer function that looks 
something like this  

 
We will find that the voltage gain 
of many amplifiers is dependent on 
the input voltage.   
 
Thus, a DC bias at the input of the 
amplifier is often required to 
maximize the amplifier gain. 
 
 
 

vin 

( )vo out inA d v d v=−  

vout 
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