EECS 412 Introduction

Q: So what's this class all about? What is its purpose?

A: In EECS 312 you learned about:

* Electronic devices (e.g., transistors and diodes)
* How we use transistors to make digital devices (e.g., inverters, gates, flip-flops, and memory).

In contrast, EECS 412 will teach you how we use transistors to make analog devices (e.g., amplifiers, filters, summers, integrators, etc.).

Analog circuits and devices operate on analog signals-usually voltage signals-that represent a continuous, time-varying analog of some physical function.

For example, the analog voltage signal $v(t)$ can represent an audio pressure wave (i.e., sound), or the beating of a human heart.

Quite often, an analog device has two ports-an input port and an output port:

A fundamental question in electrical engineering is determining the output signal $v_{\text {out }}(t)$ when the input signal $v_{\text {in }}(t)$ is known.

This is frequently a difficult question to answer, but it becomes significantly easier if the two-port device is constructed of linear, time-invariant circuit elements!

HO: THE LINEAR, TIME-INVARIANT CIRCUIT

Linear circuit behavior would be not at all useful except for the unfathomably important concept of signal expansion via basis functions!

HO: SIGNAL EXPANSIONS

Linear systems theory is useful for electrical engineers because most analog devices and systems are linear (at least approximately so!).

HO: LINEAR CIRCUIT ELEMENTS

The most powerful tool for analyzing linear systems is its Eigen function.

HO: The Eigen Function of Linear Systems

Complex voltages and currents at times cause much head scratching; let's make sure we know what these complex values and functions physically mean.

HO: A COMPLEX REPRESENTATION OF SINUSOIDAL FUNCTIONS

Signals may not have the explicit form of an Eigen function, but our linear systems theory allows us to (relatively) easily analyze this case as well.

HO: ANALYSIS OF CIRCUITS DRIVEN BY ARBITRARY FUNCTIONS

If our linear system is a linear circuit, we can apply basic circuit analysis to determine all its Eigen values!

HO: The Eigen Spectrum of Linear Circuits

A more general form of the Fourier Transform is the Laplace Transform.

HO: The Eigen Values of the Laplace Transform

The numerical value of frequency w has tremendous practical ramifications to us EEs.

HO: FREQUENCY BANDS

A set of four Eigen values can completely characterize a two-port linear system.

HO: THE IMPEDANCE AND ADMITTANCE MATRIX

A really important linear (sort of) device is the amplifier.

HO: THE AMPLIFIER

The two most important parameter of an amplifier is its gain and its bandwidth.

HO: AMPLIFIER GAIN AND BANDWIDTH

Amplifier circuits can be quite complex; however, we can use a relatively simple equivalent circuit to analyze the result when we connect things to them!

HO: CIRCUIT MODELS FOR AMPLIFIERS

One very useful application of the circuit model is to analyze and characterize types of amplifiers.

HO: CURRENT AND VOLTAGE AMPLIFIERS

It turns out that amplifiers are only approximately linear. It is important that we understand their non-linear characteristics and properties.

HO: NoN-LINEAR BEHAVIOR OF AMPLIFIERS

Linear Circuits

Many analog devices and circuits are linear (or approximately so).
Let's make sure that we understand what this term means, as if a circuit is linear, we can apply a large and helpful mathematical toolbox!

Mathematicians often speak of operators, which is "mathspeak" for any mathematical operation that can be applied to a single element (e.g., value, variable, vector, matrix, or function).

```
.operators, operators, operators!!
```

For example, a function $f(x)$ describes an operation on variable x (i.e., $f(x)$ is operator on X). E.G.:

$$
f(y)=y^{2}-3 \quad g(t)=2 t \quad y(x)=|x|
$$

Functions can be operated on

Moreover, we find that functions can likewise be operated on!
For example, integration and differentiation are likewise mathematical operations-operators that operate on functions. E.G.,:

$$
\int f(y) d y \quad \frac{d g(t)}{d t} \quad \int_{-\infty}^{\infty}|y(x)| d x
$$

A special and very important class of operators are linear operators.

Linear operators are denoted as $\mathcal{L}[y]$, where:

* \mathcal{L} symbolically denotes the mathematical operation:
* And y denotes the element (e.g., function, variable, vector) being operated on.

We call this linear superpostion

A linear operator is any operator that satisfies the following two statements for any and all y :

1. $\mathcal{L}\left[y_{1}+y_{2}\right]=\mathcal{L}\left[y_{1}\right]+\mathcal{L}\left[y_{2}\right]$
2. $\mathcal{L}[a y]=a \mathcal{L}[y]$, where a is any constant.

From these two statements we can likewise conclude that a linear operator has the property:

$$
\mathcal{L}\left[a y_{1}+b y_{2}\right]=a \mathcal{L}\left[y_{1}\right]+b \mathcal{L}\left[y_{2}\right]
$$

where both a and b are constants.

Essentially, a linear operator has the property that any weighted sum of solutions is also a solution!

An example of a linear function

For example, consider the function:
$\mathcal{L}[t]=g(t)=2 t$

At $t=1$:

$$
g(t=1)=2(1)=2
$$

and at $t=2$:

$$
g(t=2)=2(2)=4
$$

Now at $t=1+2=3$ we find:

$$
\begin{aligned}
g(1+2) & =2(3) \\
& =6 \\
& =2+4 \\
& =g(1)+g(2)
\end{aligned}
$$

See, it works like it's suppose to!

More generally, we find that:

$$
\begin{aligned}
g\left(t_{1}+t_{2}\right) & =2\left(t_{1}+t_{2}\right) \\
& =2 t_{1}+2 t_{2} \\
& =g\left(t_{1}\right)+g\left(t_{2}\right) \\
g(a t) & =2 a t \\
& =a 2 t \\
& =a g(t)
\end{aligned}
$$

and

Thus, we conclude that the function $g(t)=2 t$ is indeed a linear function!

Surely this is linear

Now consider this function:

$$
y(x)=m x+b
$$

Q: But that's the equation of a line! That must be a linear function, right?

A: I'm not sure-let's find out!
We find that:

$$
\begin{aligned}
y(a x) & =m(a x)+b \\
& =a m x+b
\end{aligned}
$$

but:

$$
\begin{aligned}
a y(x) & =a(m x+b) \\
& =a m x+a b
\end{aligned}
$$

therefore:

$$
y(a x) \neq a y(x)!!!
$$

It's not; and stop calling me Shirley

Likewise:

$$
\begin{aligned}
y\left(x_{1}+x_{2}\right) & =m\left(x_{1}+x_{2}\right)+b \\
& =m x_{1}+m x_{2}+b
\end{aligned}
$$

but:

$$
\begin{aligned}
y\left(x_{1}\right)+y\left(x_{2}\right) & =\left(m x_{1}+b\right)+\left(m x_{2}+b\right) \\
& =m x_{1}+m x_{2}+2 b
\end{aligned}
$$

therefore:

$$
y\left(x_{1}+x_{2}\right) \neq y\left(x_{1}\right)+y\left(x_{2}\right)!!!
$$

The equation of a line is not a linear function!

Moreover, you can show that the functions:

$$
f(y)=y^{2}-3 \quad y(x)=|x|
$$

are likewise non-linear.

The derivative is a linear operator

Remember, linear operators need not be functions.
Consider the derivative operator, which operates on functions.

Note that:

$$
\frac{d}{d x}[f(x)+g(x)]=\frac{d f(x)}{d x}+\frac{d g(x)}{d x}
$$

and also:

$$
\frac{d}{d x}[a f(x)]=a \frac{d f(x)}{d x}
$$

We thus can conclude that the derivative operation is a linear operator on function $f(x)$:

$$
\frac{d f(x)}{d x}=\mathcal{L}[f(x)]
$$

Most operators are not linear

You can likewise show that the integration operation is likewise a linear operator:

$$
\int f(y) d y=\mathcal{L}[f(y)]
$$

But, you will find that operations such as:

$$
\frac{d g^{2}(t)}{d t} \quad \int_{-\infty}^{\infty}|y(x)| d x
$$

are not linear operators (i.e., they are non-linear operators).
We find that most mathematical operations are in fact non-linear!
Linear operators are thus form a small subset of all possible mathematical operations.

Linear operators allow for "easy" evaluation

Q: Yikes! If linear operators are so rare, we are we wasting our time learning about them??

A: Two reasons!

Reason 1: In electrical engineering, the behavior of most of our fundamental circuit elements are described by linear operators-linear operations are prevalent in circuit analysis!

Reason 2: To our great relief, the two characteristics of linear operators allow us to perform these mathematical operations with relative ease!

Signal Expansions

Q: How is performing a linear operation easier than performing a non-linear one??

A: The "secret" lies is the result:

$$
\mathcal{L}\left[a y_{1}+b y_{2}\right]=a \mathcal{L}\left[y_{1}\right]+b \mathcal{L}\left[y_{2}\right]
$$

Note here that the linear operation performed on a relatively complex element $a y_{1}+b y_{2}$ can be determined immediately from the result of operating on the "simple" elements y_{1} and y_{2}.

To see how this might work, let's consider some arbitrary function of time $v(t)$, a function that exists over some finite amount of time T (i.e., $v(t)=0$ for $t<0$ and $t>T$).

Say we wish to perform some linear operation on this function:

$$
\mathcal{L}[v(t)]=? ?
$$

Complex signals as collections of simple elements

Depending on the difficulty of the operation \mathcal{L}, and/or the complexity of the function $v(t)$, directly performing this operation could be very painful (i.e., approaching impossible).

Instead, we find that we can often expand a very complex and stressful function in the following way:

$$
v(t)=a_{0} \psi_{0}(t)+a_{1} \psi_{1}(t)+a_{2} \psi_{2}(t)+\cdots=\sum_{n=-\infty}^{\infty} a_{n} \psi_{n}(t)
$$

where the values a_{n} are constants (i.e., coefficients), and the functions $\psi_{n}(t)$ are known as basis functions.

Ms. Nomial's first name is Poly

For example, we could choose the basis functions:

$$
\psi_{n}(t)=t^{n} \quad \text { for } \quad n \geq 0
$$

Resulting in a polynomial of variable t :

$$
v(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+\cdots=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

This signal expansion is of course know as the Taylor Series expansion.

Choose your basis but choose wisely

However, there are many other useful expansions (i.e., many other useful basis $\psi_{n}(t)$).

* The key thing is that the basis functions $\psi_{n}(t)$ are independent of the function $v(t)$. That is to say, the basis functions are selected by the engineer doing the analysis (i.e., you).
* The set of selected basis functions form what's known as a basis. With this basis we can analyze the function $v(t)$.
* The result of this analysis provides the coefficients a_{n} of the signal expansion. Thus, the coefficients are directly dependent on the form of function $v(t)$ (as well as the basis used for the analysis). As a result, the set of coefficients $\left\{a_{1}, a_{2}, a_{3}, \cdots\right\}$ completely describe the function $v(t)$!

It's simpler to operate on each element

Q: I don't see why this "expansion" of function of $v(t)$ is helpful, it just looks like a lot more work to me.

A: Consider what happens when we wish to perform a linear operation on this function:

$$
\mathcal{L}[v(t)]=\mathcal{L}\left[\sum_{n=-\infty}^{\infty} a_{n} \psi_{n}(t)\right]=\sum_{n=-\infty}^{\infty} a_{n} \mathcal{L}\left[\psi_{n}(t)\right]
$$

Look what happened!
Instead of performing the linear operation on the arbitrary and difficult function $v(t)$, we can apply the operation to each of the individual basis functions $\psi_{n}(t)$.

Choose a basis that makes this "easy"

Q: And that's supposed to be easier??
A: It depends on the linear operation and on the basis functions $\psi_{n}(\boldsymbol{t})$.
Hopefully, the operation $\mathcal{L}\left[\psi_{n}(t)\right]$ is simple and straightforward.
Ideally, the solution to $\mathcal{L}\left[\psi_{n}(t)\right]$ is already known!
Q: Oh yeah, like I'm going to get so lucky. I'm sure in all my circuit analysis problems evaluating $\mathcal{L}\left[\psi_{n}(t)\right]$ will be long, frustrating, and painful.

A: Remember, you get to choose the basis over which the function $v(t)$ is analyzed.

A smart engineer will choose a basis for which the operations $\mathcal{L}\left[\psi_{n}(t)\right]$ are simple and straightforward!

This basis is quite popular

Q: But I'm still confused. How do I choose what basis $\psi_{n}(t)$ to use, and how do I analyze the function $v(t)$ to determine the coefficients a_{n} ??

A: Perhaps an example would help. Among the most popular basis is this one:
and:

$$
a_{n}=\frac{1}{T} \int_{0}^{T} v(t) \psi_{n}^{*}(t) d t=\frac{1}{T} \int_{0}^{T} v(t) e^{-j\left(\frac{2 \pi n}{T}\right) t} d t
$$

So therefore:

$$
v(t)=\sum_{n=-\infty}^{\infty} a_{n} e^{j\left(\frac{2 \pi n}{T}\right) t} \quad \text { for } 0 \leq t \leq T
$$

The astute among you will recognize this signal expansion as the Fourier Series!

It has a very important property!

Q: Yes, just why is Fourier analysis so prevalent?
A: The answer reveals itself when we apply a linear operator to the signal expansion:

$$
\mathcal{L}[v(t)]=\mathcal{L}\left[\sum_{n=-\infty}^{\infty} a_{n} e^{-j\left(\frac{2 \pi n}{T}\right) t}\right]=\sum_{n=-\infty}^{\infty} a_{n} \mathcal{L}\left[e^{-j\left(\frac{2 \pi n}{T}\right) t}\right]
$$

Note then that we must simply evaluate:
for all n.
We will find that performing almost any linear operation \mathcal{L} on basis functions of this type to be exceeding simple (more on this later)!

Linear Circuit Elements

Most microwave devices can be described or modeled in terms of the three standard circuit elements:

1. RESISTANCE (R)

2. INDUCTANCE (L)

3. CAPACITANCE (C)

For the purposes of circuit analysis, each of these three elements are defined in terms of the mathematical relationship between the difference in electric potential $v(t)$ between the two terminals of the device (i.e., the voltage across the device), and the current $i(t)$ flowing through the device.

We find that for these three circuit elements, the relationship between $v(t)$ and $i(t)$ can be expressed as a linear operator!

Since the circuit behavior of these devices can be expressed with linear operators, these devices are referred to as linear circuit elements.

A linear operator describes any relationship

Q: Well, that's simple enough, but what about an element formed from a composite of these fundamental elements?

For example, for example, how are $v(t)$ and $i(t)$ related in the circuit below??
$\mathcal{L}_{z}[i(t)]=v(t)=? ? ?$

A: It turns out that any circuit constructed entirely with linear circuit elements is likewise a linear system (i.e., a linear circuit).

As a result, we know that that there must be some linear operator that relates $v(t)$ and $i(t)$ in your example!

$$
\mathcal{L}_{\mathcal{Z}}[i(t)]=v(t)
$$

This is very useful for multi-port networks

The circuit above provides a good example of a single-port (a.k.a. one-port) network.

We can of course construct networks with two or more ports; an example of a two-port network is shown below:

Since this circuit is linear, the relationship between all voltages and currents can likewise be expressed as linear operators, e.g.:

$$
\mathcal{L}_{21}\left[v_{1}(t)\right]=v_{2}(t) \quad \mathcal{L}_{z 21}\left[i_{1}(t)\right]=v_{2}(t) \quad \mathcal{L}_{z 22}\left[i_{2}(t)\right]=v_{2}(t)
$$

The linear operator is

a convolution integral

Q: Yikes! What would these linear operators for this circuit be? How can we determine them?

A: It turns out that linear operators for all linear circuits can all be expressed in precisely the same form!

For example, the linear operators of a single-port network are:

$$
\begin{aligned}
& v(t)=\mathcal{L}_{z}[i(t)]=\int_{-\infty}^{t} g_{z}\left(t-t^{\prime}\right) i\left(t^{\prime}\right) d t^{\prime} \\
& i(t)=\mathcal{L}_{y}[v(t)]=\int_{-\infty}^{t} g_{y}\left(t-t^{\prime}\right) v\left(t^{\prime}\right) d t^{\prime}
\end{aligned}
$$

In other words, the linear operator of linear circuits can always be expressed as a convolution integral-a convolution with a circuit impulse function $g(t)$.

The impulse response

Q: But just what is this "circuit impulse response"??
A: An impulse response is simply the response of one circuit function (i.e., $i(t)$ or $v(t)$) due to a specific stimulus by another.

That specific stimulus is the impulse function $\delta(t)$.
The impulse function can be defined as:

$$
\delta(t)=\lim _{\tau \rightarrow 0} \frac{1}{\tau} \frac{\sin \left(\frac{\pi t}{\tau}\right)}{\left(\frac{\pi t}{\tau}\right)}
$$

Such that is has the following two properties:

1. $\delta(t)=0$ for $t \neq 0$
2. $\int_{-\infty}^{\infty} \delta(t) d t=1.0$

We can define all sorts

of impulse responses

The impulse responses of the one-port example are therefore defined as:

and: $\left.\quad g_{z}(t) \doteq v(t)\right\|_{i(t)=\delta(t)}$
$\qquad\left.g_{y}(t) \doteq i(t)\right\|_{v(t)=\delta(t)}$
\qquadMeaning simply that $g_{z}(t)$ is equal to the voltage function $v(t)$ when the circuit is "thumped" with a impulse current (i.e., $i(t)=\delta(t)$, and $g_{y}(t)$ is equal to the current $i(t)$ when

We can make convolution integrals simple!

Similarly, the relationship between the input and the output of a two-port network can be expressed as:
where:

$$
v_{2}(t)=\mathcal{L}_{21}\left[v_{1}(t)\right]=\int_{-\infty}^{t} g\left(t-t^{\prime}\right) v_{1}\left(t^{\prime}\right) d t^{\prime}
$$

Note that the circuit impulse response must be causal (nothing can occur at the output until something occurs at the input), so that:

$$
g(t)=0 \text { for } t<0
$$

Q: Yikes! I recall evaluating convolution integrals to be messy, difficult and stressful. Surely there is an easier way to describe linear circuits!?!

A: Nope! The convolution integral is all there is.
However, we can use our linear systems theory toolbox to greatly simplify the evaluation of a convolution integral!

The Eigen Function of Linear Systems

Recall that that we can express (expand) a time-limited signal with a weighted summation of basis functions:

$$
v(t)=\sum_{n} a_{n} \psi_{n}(t)
$$

where $v(t)=0$ for $t<0$ and $t>T$.
Say now that we convolve this signal with some system impulse function $g(t)$:

$$
\begin{aligned}
\mathcal{L}[v(t)] & =\int_{-\infty}^{t} g\left(t-t^{\prime}\right) v\left(t^{\prime}\right) d t^{\prime} \\
& =\int_{-\infty}^{t} g\left(t-t^{\prime}\right) \sum_{n} a_{n} \psi_{n}\left(t^{\prime}\right) d t^{\prime} \\
& =\sum_{n} a_{n} \int_{-\infty}^{t} g\left(t-t^{\prime}\right) \psi_{n}\left(t^{\prime}\right) d t^{\prime}
\end{aligned}
$$

Look what happened!

Convolve with the basis functions - not the signal

Instead of convolving the general function $v(t)$, we now find that we must simply convolve with the set of basis functions $\psi_{n}(t)$.

Q: Huh? You say we must "simply" convolve the set of basis functions $\psi_{n}(t)$. Why would this be any simpler?

A: Remember, you get to choose the basis $\psi_{n}(t)$. If you're smart, you'll choose a set that makes the convolution integral "simple" to perform!

Q: But don't I first need to know the explicit form of $g(t)$ before I intelligently choose $\psi_{n}(t)$??

A: Not necessarily!

Time to use our "special" basis

The key here is that the convolution integral:

$$
\mathcal{L}\left[\psi_{n}(t)\right]=\int_{-\infty}^{t} g\left(t-t^{\prime}\right) \psi_{n}\left(t^{\prime}\right) d t^{\prime}
$$

is a linear, time-invariant operator.
Because of this, there exists one basis with an astonishing property!
These special basis functions are:

$$
\psi_{n}(t)=\left\{\begin{array}{l}
e^{j \omega_{n} t} \text { for } 0 \leq t \leq T \\
0 \text { for } t<0, t>T
\end{array} \quad \text { where } \quad \omega_{n}=n\left(\frac{2 \pi}{T}\right)\right.
$$

Prof. Stiles: So darn lame

Now, inserting this function (get ready, here comes the astonishing part!) into the convolution integral:

$$
\mathcal{L}\left[e^{j \omega_{n} t}\right]=\int_{-\infty}^{t} g\left(t-t^{\prime}\right) e^{j \omega_{n} t} d t^{\prime}
$$

and using the substitution $u=t-t^{\prime}$, we get:

$$
\begin{aligned}
\int_{-\infty}^{t} g\left(t-t^{\prime}\right) e^{j \omega_{n} t} d t^{\prime} & =\int_{t-(-\infty)}^{t-t} g(u) e^{j \omega_{n}(t-u)}(-d u) \\
& =e^{j \omega_{n} t} \int_{-\infty}^{0} g(u) e^{-j \omega_{n} u}(-d u) \\
& =e^{j \omega_{n} t} \int_{0}^{\infty} g(u) e^{-j \omega_{n} u} d u
\end{aligned}
$$

See! Doesn't that astonish!
Q: I'm only astonished by how lame you are. How is this result any more "astonishing" than any of the other "useful" things you've been telling us?

Convolution becomes multiplication

A: Note that the integration in this result is not a convolution-the integral is simply a value that depends on n (but not time f):

$$
G\left(\omega_{n}\right) \doteq \int_{0}^{\infty} g(t) e^{-j \omega_{n} t} d t
$$

As a result, convolution with this "special" set of basis functions can always be expressed as:

$$
\int_{-\infty}^{t} g\left(t-t^{\prime}\right) e^{j \omega_{n} t} d t^{\prime}=\mathcal{L}\left[e^{j \omega_{n} t}\right]=\boldsymbol{G}\left(\omega_{n}\right) e^{j \omega_{n} t}
$$

The remarkable thing about this result is that the linear operation on function $\psi_{n}(t)=\exp \left[j \omega_{n} t\right]$ results in precisely the same function of time t (save the complex multiplier $G\left(\omega_{n}\right)$)! I.E.:

$$
\mathcal{L}\left[\psi_{n}(t)\right]=G\left(\omega_{n}\right) \psi_{n}(t)
$$

Convolution with $\psi_{n}(t)=\exp \left[j \omega_{n} t\right]$ is accomplished by simply multiplying the function by the complex number $\mathcal{G}\left(\omega_{n}\right)$!

This only works for complex exponentials

Note this is true regardless of the impulse response $g(t)$ (the function $g(t)$ affects the value of $G\left(\omega_{n}\right)$ only)!

Q: Big deal! Aren't there lots of other functions that would satisfy the equation above equation?

A: Nope. The only function where this is true is:

$$
\psi_{n}(t)=e^{j \omega_{n} t}
$$

This function is thus very special.
We call this function the eigen function of linear, time-invariant systems.

But complex exponentials are two sinusoidal functions

Q: Are you sure that there are no other Eigen functions??

A: Well, sort of.

Recall from Euler's equation that:

$$
e^{j \omega_{n} t}=\cos \omega_{n} t+j \sin \omega_{n} t
$$

It can be shown that the sinusoidal functions $\cos \omega_{n} t$ and $\sin \omega_{n} t$ are likewise Eigen functions of linear, time-invariant systems.

The real and imaginary components of Eigen function $\exp \left[j \omega_{n} t\right]$ are also Eigen functions.

Every linear operator has its Eigen value

Q: What about the set of values $G\left(\omega_{n}\right)$?? Do they have any significance or importance??

A: Absolutely!
Recall the values $G\left(\omega_{n}\right)$ (one for each n) depend on the impulse response of the system (e.g., circuit) only:

$$
G\left(\omega_{n}\right) \doteq \int_{0}^{\infty} g(t) e^{-j \omega_{n} t} d t
$$

Thus, the set of values $G\left(\omega_{n}\right)$ completely characterizes a linear time-invariant circuit over time $0 \leq t \leq T$.

We call the values $G\left(\omega_{n}\right)$ the Eigen values of the linear, time-invariant circuit.

We're electrical engineers: why should we care?

Q: OK Poindexter, all Eigen stuff this might be interesting if you're a mathematician, but is it at all useful to us electrical engineers?

A: It is unfathomably useful to us electrical engineers!

Say a linear, time-invariant circuit is excited (only) by a sinusoidal source (e.g., $\left.v_{s}(t)=\cos \omega_{o} t\right)$.

Since the source function is the Eigen function of the circuit, we will find that at every point in the circuit, both the current and voltage will have the same functional form.

That is, every current and voltage in the circuit will likewise be a perfect sinusoid with frequency ω_{0} !!

Haven't you wondered why we always use these?

Of course, the magnitude of the sinusoidal oscillation will be different at different points within the circuit, as will the relative phase.

But we know that every current and voltage in the circuit can be precisely expressed as a function of this form:

$$
A \cos \left(\omega_{0} t+\varphi\right)
$$

Q: Isn't this pretty obvious?

A: Why should it be?
Say our source function was instead a square wave, or triangle wave, or a sawtooth wave.

We would find that (generally speaking) nowhere in the circuit would we find another current or voltage that was a perfect square wave (etc.)!

We "just" have to determine magnitude and phase!

In fact, we would find that not only are the current and voltage functions within the circuit different than the source function (e.g. a sawtooth) they are (generally speaking) all different from each other.

We find then that a linear circuit will (generally speaking) distort any source function-unless that function is the Eigen function (i.e., a sinusoidal function).

Thus, using an Eigen function as circuit source greatly simplifies our linear circuit analysis problem.

All we need to accomplish this is to determine the magnitude A and relative phase φ of the resulting (and otherwise identical) sinusoidal function!

A Complex Representation of
 Sinusoidal Functions

Q: So, you say (for example) if a linear two-port circuit is driven by a sinusoidal source with arbitrary frequency ω_{0}, then the output will be identically sinusoidal, only with a different magnitude and relative phase.

How do we determine the unknown magnitude $V_{m 2}$ and phase φ_{2} of this output?

Eigen values are complex

A: Say the input and output are related by the impulse response $g(t)$:

$$
v_{2}(t)=\mathcal{L}\left[v_{1}(t)\right]=\int_{-\infty}^{t} g\left(t-t^{\prime}\right) v_{1}\left(t^{\prime}\right) d t^{\prime}
$$

We now know that if the input were instead:
then:

$$
v_{1}(t)=e^{j \omega_{0} t}
$$

$$
v_{2}(t)=\mathcal{L}\left[e^{j \omega_{0} t}\right]=\boldsymbol{G}\left(\omega_{0}\right) e^{j \omega_{0} t}
$$

where:

$$
G\left(\omega_{0}\right) \doteq \int_{0}^{\infty} g(t) e^{-j \omega_{0} t} d t
$$

Thus, we simply multiply the input $v_{1}(t)=e^{j \omega_{0} t}$ by the complex eigen value $G\left(\omega_{0}\right)$ to determine the complex output $v_{2}(t)$:

$$
v_{2}(t)=G\left(\omega_{0}\right) e^{j \omega_{0} t}
$$

Complex voltages and currents

are your friend!

Q: You professors drive me crazy with all this math involving complex (i.e., real and imaginary) voltage functions. In the lab I can only generate and measure real-valued voltages and real-valued voltage functions. Voltage is a real-valued, physical parameter!

A: You are quite correct.

Voltage is a real-valued parameter, expressing electric potential (in Joules) per unit charge (in Coulombs).

Q: So, all your complex formulations and complex eigen values and complex eigen functions may all be sound mathematical abstractions, but aren't they worthless to us electrical engineers who work in the "real" world (pun intended)?

A: Absolutely not! Complex analysis actually simplifies our analysis of realvalued voltages and currents in linear circuits (but only for linear circuits!).

Remember Euler

The key relationship comes from Euler's Identity:

$$
\begin{gathered}
e^{j \omega t}=\cos \omega t+j \sin \omega t \\
\operatorname{Re}\left\{e^{j \omega t}\right\}=\cos \omega t
\end{gathered}
$$

Meaning:

Now, consider a complex value C. We of course can write this complex number in terms of it real and imaginary parts:

$$
C=a+j b \quad \therefore a=\operatorname{Re}\{C\} \quad \text { and } \quad b=\operatorname{Im}\{C\}
$$

But, we can also write it in terms of its magnitude $|C|$ and phase φ !
where:

$$
C=|C| e^{j \varphi}
$$

$$
|C|=C C^{*}=a^{2}+b^{2} \quad \varphi=\tan ^{-1}[b / a]
$$

A complex number has magnitude and phase

Thus, the complex function $C e^{j o_{0} t}$ is:

$$
\begin{aligned}
C e^{j \omega_{0} t} & =|C| e^{j \varphi} e^{j \omega_{0} t} \\
& =|C| e^{j \omega_{0} t+\varphi} \\
& =|C| \cos \left(\omega_{0} t+\varphi\right)+j|C| \sin \left(\omega_{0} t+\varphi\right)
\end{aligned}
$$

Therefore we find:

$$
|C| \cos \left(\omega_{0} t+\varphi\right)=\operatorname{Re}\left\{C e^{j \omega_{0} t}\right\}
$$

Now, consider again the real-valued voltage function:

$$
V_{1}(t)=V_{m 1} \cos \left(\omega t+\varphi_{1}\right)
$$

This function is of course sinusoidal with a magnitude $V_{m 1}$ and phase φ_{1}.
Using what we have learned above, we can likewise express this real function as:

$$
v_{1}(t)=V_{m 1} \cos \left(\omega t+\varphi_{1}\right)=\operatorname{Re}\left\{V_{1} e^{j \omega t}\right\}
$$

where V_{1} is the complex number:

$$
V_{1}=V_{m 1} e^{j q_{1}}
$$

But what is the output signal?

Q: I see! A real-valued sinusoid has a magnitude and phase, just like complex number.

A single complex number (V) can be used to specify both of the fundamental (real-valued) parameters of our sinusoid (V_{m}, φ).

What I don't see is how this helps us in our circuit analysis.
After all:

$$
v_{2}(t) \neq \boldsymbol{G}\left(\omega_{0}\right) \operatorname{Re}\left\{V_{1} e^{j \omega_{0} t}\right\}
$$

What then is the real-valued output $v_{2}(t)$ of our two-port network when the input $v_{1}(t)$ is the real-valued sinusoid:

$$
\begin{aligned}
v_{1}(t) & =V_{m 1} \cos \left(\omega_{0} t+\varphi_{1}\right) \\
& =\operatorname{Re}\left\{V_{1} e^{j \omega_{o}}\right\}
\end{aligned}
$$

The math will reveal the answer!

A: Let's go back to our original convolution integral:

$$
\begin{aligned}
& \begin{aligned}
v_{2}(t) & =\int_{-\infty}^{t} g\left(t-t^{\prime}\right) v_{1}\left(t^{\prime}\right) d t^{\prime} \\
v_{1}(t) & =V_{m 1} \cos \left(\omega_{0} t+\varphi_{1}\right) \\
& =\operatorname{Re}\left\{V_{1} e^{j \omega_{0} t}\right\}
\end{aligned} \\
& v_{2}(t)=\int_{-\infty}^{t} g\left(t-t^{\prime}\right) \operatorname{Re}\left\{V_{1} e^{j \omega_{o} t}\right\} d t^{\prime}
\end{aligned}
$$

then:

Now, since the impulse function $g(t)$ is real-valued (this is really important!) it can be shown that:

$$
\begin{aligned}
V_{2}(t) & =\int_{-\infty}^{t} g\left(t-t^{\prime}\right) \operatorname{Re}\left\{V_{1} e^{j \omega_{0} t^{t}}\right\} d t^{\prime} \\
& =\operatorname{Re}\left\{\int_{-\infty}^{t} g\left(t-t^{\prime}\right) V_{1} e^{j \omega_{0} t^{\prime}} d t^{\prime}\right\}
\end{aligned}
$$

The output signal

Now, applying what we have previously learned;

$$
\begin{aligned}
v_{2}(t) & =\operatorname{Re}\left\{\int_{-\infty}^{t} g\left(t-t^{\prime}\right) V_{1} e^{j \omega_{0} t^{\prime}} d t^{\prime}\right\} \\
& =\operatorname{Re}\left\{V_{1} \int_{-\infty}^{t} g\left(t-t^{\prime}\right) e^{j \omega_{0} t^{\prime}} d t^{\prime}\right\} \\
& =\operatorname{Re}\left\{V_{1} G\left(\omega_{0}\right) e^{j \omega_{0} t}\right\}
\end{aligned}
$$

Thus, we finally can conclude the real-valued output $v_{2}(t)$ due to the realvalued input:

$$
v_{1}(t)=V_{m 1} \cos \left(\omega_{0} t+\varphi_{1}\right)=\operatorname{Re}\left\{V_{1} e^{j \omega_{0} t}\right\}
$$

is:

$$
v_{2}(t)=\operatorname{Re}\left\{V_{2} e^{j \omega_{0} t}\right\}=V_{m 2} \cos \left(\omega_{0} t+\varphi_{2}\right)
$$

where:

$$
V_{2}=G\left(\omega_{0}\right) V_{1}
$$

The really important result here is the last one!

The Eigen value of the Linear operator is

 its "Frequency Response"

The magnitude and phase of the output sinusoid (expressed as complex value V_{2}) is related to the magnitude and phase of the input sinusoid (expressed as complex value V_{1}) by the system eigen value $G\left(\omega_{o}\right)$:

$$
\frac{V_{2}}{V_{1}}=G\left(\omega_{0}\right)
$$

Therefore we find that really often in electrical engineering, we:

1. Use sinusoidal (i.e., eigen function) sources.
2. Express the voltages and currents created by these sources as complex values (i.e., not as real functions of time)!

Make sure you know what complex voltages and currents physically represent!

For example, we might say " $V_{3}=2.0$ ", meaning:

$$
V_{3}=2.0=2.0 e^{j 0} \Rightarrow V_{3}(t)=\operatorname{Re}\left\{2.0 e^{j 0} e^{j \omega_{0} t}\right\}=2.0 \cos \omega_{0} t
$$

Or " $I_{L}=-3.0$ ", meaning:
$I_{L}=-2.0=3.0 e^{j \pi} \Rightarrow i_{L}(t)=\operatorname{Re}\left\{3.0 e^{j \pi} e^{j \omega_{o} t}\right\}=3.0 \cos \left(\omega_{0} t+\pi\right)$

Or " $V_{s}=j$ ", meaning:
$V_{s}=j=1.0 e^{j(\pi / 2)} \Rightarrow v_{s}(t)=\operatorname{Re}\left\{1.0 e^{j(\pi / 2)} e^{j \omega_{o} t}\right\}=1.0 \cos \left(\omega_{0} t+\pi / 2\right)$

Summarizing

* Remember, if a linear circuit is excited by a sinusoid (e.g., eigen function $\left.\exp \left[j \omega_{0} t\right]\right)$, then the only unknowns are the magnitude and phase of the sinusoidal currents and voltages associated with each element of the circuit.
* These unknowns are completely described by complex values, as complex values likewise have a magnitude and phase.
* We can always "recover" the real-valued voltage or current function by multiplying the complex value by $\exp \left[j \omega_{0} t\right]$ and then taking the real part, but typically we don't-after all, no new or unknown information is revealed by this operation!

Analysis of Circuits Driven by

Arbitrary Functions

Q: What happens if a linear circuit is excited by some function that is not an "eigen function"? Isn't limiting our analysis to sinusoids too restrictive?

A: Not as restrictive as you might think.
Because sinusoidal functions are the eigen-functions of linear, time-invariant systems, they have become fundamental to much of our electrical engineering infrastructure-particularly with regard to communications.

For example, every radio and TV station is assigned its very own eigen function (i.e., its own frequency ω)!

Eigen functions: without them communication would be impossible

It is very important that we use eigen functions for electromagnetic communication, otherwise the received signal might look grotesquely different from the one that was transmitted!

$\psi_{n}(t) \neq e^{j \omega_{n} t}$

With sinusoidal functions (being eigen functions and all), we know that receive function will have precisely the same form as the one transmitted (albeit quite a bit smaller).

Thus, our assumption that a linear circuit is excited by a sinusoidal function is often a very accurate and practical one!

What if the signal is not sinusoidal?

Q: Still, we often find a circuit that is not driven by a sinusoidal source. How would we analyze this circuit?

A: Recall the property of linear operators:

$$
\mathcal{L}\left[a y_{1}+b y_{2}\right]=a \mathcal{L}\left[y_{1}\right]+b \mathcal{L}\left[y_{2}\right]
$$

We now know that we can expand the function:

$$
v(t)=a_{0} \psi_{0}(t)+a_{1} \psi_{1}(t)+a_{2} \psi_{2}(t)+\cdots=\sum_{n=-\infty}^{\infty} a_{n} \psi_{n}(t)
$$

and we found that:

$$
\mathcal{L}[v(t)]=\mathcal{L}\left[\sum_{n=-\infty}^{\infty} a_{n} \psi_{n}(t)\right]=\sum_{n=-\infty}^{\infty} a_{n} \mathcal{L}\left[\psi_{n}(t)\right]
$$

Let's choose Eigen functions as our basis

We found that any linear operation $\mathcal{L}\left[\psi_{n}(t)\right]$ is greatly simplified if we choose as our basis function the eigen function of linear systems:

$$
\psi_{n}(t)=\left\{\begin{array}{l}
e^{j \omega_{n} t} \text { for } 0 \leq t \leq T \\
0 \text { for } t<0, t>T
\end{array} \quad \text { where } \quad \omega_{n}=n\left(\frac{2 \pi}{T}\right)\right.
$$

so that:

$$
\mathcal{L}\left[\psi_{n}(t)\right]=\boldsymbol{G}\left(\omega_{n}\right) e^{j \omega_{n} t}
$$

And so:

$$
\mathcal{L}[v(t)]=\mathcal{L}\left[\sum_{n=-\infty}^{\infty} a_{n} e^{j \omega_{n} t}\right]=\sum_{n=-\infty}^{\infty} a_{n} \mathcal{L}\left[e^{j \omega_{n} t}\right]=\sum_{n=-\infty}^{\infty} a_{n} G\left(\omega_{n}\right) e^{j \omega_{n} t}
$$

Just follow these steps...

Thus, for the example:

We follow these analysis steps:

1. Expand the input function $v_{1}(t)$ using the basis functions $\psi_{n}(t)=\exp \left[j \omega_{n} t\right]$:

$$
v_{1}(t)=V_{01} e^{j \omega_{0} t}+V_{11} e^{j \omega_{1} t}+V_{21} e^{j \omega_{2} t}+\cdots=\sum_{n=-\infty}^{\infty} V_{n 1} e^{j \omega_{n} t}
$$

where:

$$
V_{n 1}=\frac{1}{T} \int_{0}^{T} v_{1}(t) e^{-j \omega_{n} t} d t
$$

...and the output is determined

2. Evaluate the eigen values of the linear system:

$$
G\left(\omega_{n}\right)=\int_{0}^{\infty} g(t) e^{-j \omega_{n} t} d t
$$

3. Perform the linear operation (the convolution integral) that relates $v_{2}(t)$ to $v_{1}(t)$:

$$
\begin{aligned}
v_{2}(t) & =\mathcal{L}\left[v_{1}(t)\right] \\
& =\mathcal{L}\left[\sum_{n=-\infty}^{\infty} V_{n 1} e^{j \omega_{n} t}\right] \\
& =\sum_{n=-\infty}^{\infty} V_{n 1} \mathcal{L}\left[e^{j \omega_{n} t}\right] \\
& =\sum_{n=-\infty}^{\infty} V_{n 1} G\left(\omega_{n}\right) e^{j \omega_{n} t}
\end{aligned}
$$

A Summary

Summarizing:
where:

$$
v_{2}(t)=\sum_{n=-\infty}^{\infty} V_{n 2} e^{j \omega_{n} t}
$$

$$
V_{n 2}=\boldsymbol{G}\left(\omega_{n}\right) V_{n 1}
$$

and:

As stated earlier, the signal expansion used here is the Fourier Series.

$$
\begin{aligned}
& V_{n 1}=\frac{1}{T} \int_{0}^{T} v_{1}(t) e^{-j \omega_{n} t} d t \quad G\left(\omega_{n}\right)=\int_{0}^{\infty} g(t) e^{-j \omega_{n} t} d t
\end{aligned}
$$

The Fourier Transform

Say that the timewidth T of the signal $v_{1}(t)$ becomes infinite. In this case we find our analysis becomes:
where:

$$
V_{2}(t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} V_{2}(\omega) e^{j \omega t} d \omega
$$

and:

$$
V_{1}(\omega)=\int_{-\infty}^{+\infty} V_{1}(t) e^{-j \omega t} d t \quad G(\omega)=\int_{-\infty}^{+\infty} g(t) e^{-j \omega t} d t
$$

The signal expansion in this case is the Fourier Transform.
We find that as $T \rightarrow \infty$ the number of discrete system eigen values $G\left(\omega_{n}\right)$ become so numerous that they form a continuum- $G(\omega)$ is a continuous function of frequency ω.

We thus call the function $G(\omega)$ the eigen spectrum or frequency response of the circuit.

This still looks very difficult!

Q: You claim that all this fancy mathematics (e.g., eigen functions and eigen values) make analysis of linear systems and circuits much easier, yet to apply these techniques, we must determine the eigen values or eigen spectrum:

$$
G\left(\omega_{n}\right)=\int_{0}^{\infty} g(t) e^{-j \omega_{n} t} d t \quad G(\omega)=\int_{-\infty}^{+\infty} g(t) e^{-j \omega t} d t
$$

Neither of these operations look at all easy.
And in addition to performing the integration, we must somehow determine the impulse function $g(t)$ of the linear system as well!

Just how are we supposed to do that?

It's not nearly as difficult as it appears!

A: An insightful question!
Determining the impulse response $g(t)$ and then the frequency response $G(\omega)$ does appear to be exceedingly difficult-and for many linear systems it indeed is!

However, much to our great relief, we can determine the eigen spectrum $G(\omega)$ of linear circuits without having to perform a difficult integration.

In fact, we don't even need to know the impulse response $g(t)$!

The Eigen Values of Linear Circuits

Recall the linear operators that define a capacitor:

$$
\begin{aligned}
& \mathcal{L}_{y}^{c}\left[v_{c}(t)\right]=i_{c}(t)=c \frac{d v_{c}(t)}{d t} \\
& \mathcal{L}_{z}^{c}\left[i_{c}(t)\right]=v_{c}(t)=\frac{1}{C} \int_{-\infty}^{t} i_{c}\left(t^{\prime}\right) d t^{\prime}
\end{aligned}
$$

We now know that the Eigen function of these linear, time-invariant operatorslike all linear, time-invariant operators-is $\exp [j \omega t]$.

The question now is: what is the Eigen value of each of these operators?
It is this value that defines the physical behavior of a given capacitor!

The operator is linear

For $v_{c}(t)=\exp [j \omega t]$, we find:

$$
\begin{aligned}
i_{c}(t) & =\mathcal{L}_{y}^{c}\left[v_{c}(t)\right] \\
& =C \frac{d e^{j \omega t}}{d t} \\
& =(j \omega C) e^{j \omega t}
\end{aligned}
$$

Just as we expected, the Eigen function $\exp [j \omega t]$ "survives" the linear operation unscathed-the current function $i(t)$ has precisely the same form as the voltage function $v(t)=\exp [j \omega t]$.

The only difference between the current and voltage is the multiplication of the Eigen value, denoted as $G_{y}^{c}(\omega)$.

$$
i_{c}(t)=\mathcal{L}_{y}^{c}\left[v(t)=e^{j \omega t}\right]=G_{y}^{c}(\omega) e^{j \omega t}
$$

The Eigen value of a capacitor

Since we just determined that for this case:

$$
i_{C}(t)=(j \omega C) e^{j \omega t}
$$

it is evident that the Eigen value of the linear operation:

$$
i(t)=\mathcal{L}_{y}^{c}[v(t)]=c \frac{d v(t)}{d t}
$$

is:

$$
\mathcal{G}_{y}^{C}(\omega)=j \omega C=\omega C e^{j \pi / 2}!!!
$$

Let's now consider real-valued functions

So for example, if:

$$
\begin{aligned}
v(t) & =V_{m} \cos \left(\omega_{o} t+\varphi\right) \\
& =\operatorname{Re}\left\{\left(V_{m} e^{j \varphi}\right) e^{j \omega_{o} t}\right\}
\end{aligned}
$$

we will find that:

$$
\begin{aligned}
\mathcal{L}_{y}^{c}\left[\left(V_{m} e^{j \varphi}\right) e^{j \omega_{0} t}\right] & =\mathcal{G}_{y}^{C}\left(\omega_{o}\right)\left(V_{m} e^{j \varphi}\right) e^{j \omega_{0} t} \\
& =\left(\omega C e^{j \pi / 2}\right)\left(V_{m} e^{j \varphi}\right) e^{j \omega_{o} t} \\
& =\left(\omega C V_{m}^{j(\pi / 2+\varphi)}\right) e^{j \omega_{0} t}
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
i_{C}(t) & =\operatorname{Re}\left\{\omega C V_{m} e^{j(\varphi+\pi / 2)} e^{j \omega_{0} t}\right\} \\
& =\omega C V_{m} \cos \left(\omega_{0} t+\varphi+\pi / 2\right) \\
& =-\omega C V_{m} \sin \left(\omega_{0} t+\varphi\right)
\end{aligned}
$$

Remember what the complex value means

Hopefully, this example again emphasizes that these real-valued sinusoidal functions can be completely expressed in terms of complex values.

For example, the complex value:

$$
V_{c}=V_{m} e^{j \varphi}
$$

means that the magnitude of the sinusoidal voltage is $\left|V_{c}\right|=V_{m}$, and its relative phase is $\angle V_{c}=\varphi$. The complex value:

$$
I_{c}=G_{y}^{c}(\omega) V_{c}=\left(\omega C e^{j \pi / 2}\right) V_{c}
$$

likewise means that the magnitude of the sinusoidal current is:

$$
\left|I_{c}\right|=\left|G_{y}^{c}(\omega) V_{c}\right|=\left|G_{y}^{c}(\omega)\right|\left|V_{c}\right|=\omega C V_{m}
$$

And the relative phase of the sinusoidal current is:

$$
\angle I_{c}=\angle G_{y}^{c}(\omega)+\angle V_{c}=\pi / 2+\varphi
$$

Now find the voltage from the current

We can thus summarize the behavior of a capacitor with the simple complex equation:

$$
\begin{aligned}
I_{C} & =(j \omega C) V_{C} \\
& =\left(\omega C e^{j \pi / 2}\right) V_{C}
\end{aligned}
$$

Now let's return to the second of the two linear operators that describe a capacitor:

$$
v_{c}(t)=\mathcal{L}_{\mathcal{Z}}^{c}\left[i_{c}(t)\right]=\frac{1}{C} \int_{-\infty}^{t} i_{c}\left(t^{\prime}\right) d t^{\prime}
$$

Now, if the capacitor current is the Eigen function $i_{c}(t)=\exp [j \omega t]$, we find:

$$
\mathcal{L}_{z}^{C}\left[e^{j \omega t}\right]=\frac{1}{C} \int_{-\infty}^{t} e^{j \omega t^{\prime}} d t^{\prime}=\left(\frac{1}{j \omega C}\right) e^{j \omega t}
$$

where we assume $i(t=-\infty)=0$.

The Eigen value of this linear operator

Thus, we can conclude that:

$$
\mathcal{L}_{\mathcal{Z}}^{C}\left[e^{j \omega t}\right]=G_{Z}^{C}(\omega) e^{j \omega t}=\left(\frac{1}{j \omega C}\right) e^{j \omega t}
$$

Hopefully, it is evident that the Eigen value of this linear operator is:

$$
\mathcal{G}_{\mathcal{Z}}^{C}(\omega)=\frac{1}{j \omega C}=\frac{-j}{\omega C}=\frac{1}{\omega C} e^{j(3 \pi / 2)}
$$

And so:

$$
V_{c}=\left(\frac{1}{j \omega C}\right) I_{c}
$$

Impedance is simply an Eigen value!

Q: Wait a second! Isn't this essentially the same result as the one derived for operator \mathcal{L}_{ν}^{c} ??

A: It's precisely the same! For both operators we find:

$$
\frac{V_{c}}{I_{c}}=\frac{1}{j \omega C}
$$

This should not be surprising, as both operators \mathcal{L}_{y}^{c} and \mathcal{L}_{z}^{c} relate the current through and voltage across the same device (a capacitor).

The ratio of complex voltage to complex current is of course referred to as the complex device impedance Z.

$$
Z \doteq \frac{V}{I}
$$

An impedance can be determined for any linear, time-invariant one-port network-but only for linear, time-invariant one-port networks!

Know what impedance tells you!

Generally speaking, impedance is a function of frequency. In fact, the impedance of a one-port network is simply the Eigen value $G_{z}(\omega)$ of the linear operator $\mathcal{L}_{\mathcal{Z}}$:

$$
\mathcal{L}_{\mathcal{Z}}[i(t)]=v(t)
$$

$$
Z=G_{\mathcal{Z}}(\omega)
$$

Note that impedance is a complex value that provides us with two things:

1. The ratio of the magnitudes of the sinusoidal voltage and current:

$$
|Z|=\frac{|V|}{|I|}
$$

2. The difference in phase between the sinusoidal voltage and current:

$$
\angle Z=\angle V-\angle I
$$

Admittance

Q: What about the linear operator:

$$
\mathcal{L}_{y}[v(t)]=i(t) ? ?
$$

A: Hopefully it is now evident to you that:

$$
G_{y}(\omega)=\frac{1}{G_{z}(\omega)}=\frac{1}{Z}
$$

The inverse of impedance is admittance Y :

$$
y \doteq \frac{1}{Z}=\frac{I}{V}
$$

Inductors and resistors

Now, returning to the other two linear circuit elements, we find (and you can verify) that for resistors:

$$
\begin{array}{ll}
\mathcal{L}_{y}^{R}\left[v_{R}(t)\right]=i_{R}(t) & \Rightarrow G_{y}^{R}(\omega)=1 / R \\
\mathcal{L}_{z}^{R}\left[i_{R}(t)\right]=v_{R}(t) & \Rightarrow G_{z}^{R}(\omega)=R
\end{array}
$$

and for inductors:

$$
\begin{array}{ll}
\mathcal{L}_{y}^{L}\left[v_{L}(t)\right]=i_{L}(t) & \Rightarrow G_{y}^{L}(\omega)=\frac{1}{j \omega L} \\
\mathcal{L}_{z}^{L}\left[i_{L}(t)\right]=v_{L}(t) & \Rightarrow G_{z}^{L}(\omega)=j \omega L
\end{array}
$$

meaning:

$$
Z_{R}=\frac{1}{y_{R}}=R=R e^{j 0} \quad \text { and } \quad Z_{L}=\frac{1}{y_{L}}=j \omega L=\omega L e^{j(\pi / 2)}
$$

All the rules of circuit theory apply to complex currents and voltages too

Now, note that the relationship

$$
Z=\frac{V}{I}
$$

forms a complex "Ohm's Law" with regard to complex currents and voltages.
Additionally, ICBST (It Can Be Shown That) Kirchoff's Laws are likewise valid for complex currents and voltages:

$$
\sum_{n} I_{n}=0 \quad \sum_{n} V_{n}=0
$$

where of course the summation represents complex addition.
As a result, the impedance (i.e., the Eigen value) of any one-port device can be determined by simply applying a basic knowledge of linear circuit analysis!

We can determine Eigen values without knowing the impulse response!

Returning to the example:

And thus using out basic circuits knowledge, we find:

$$
Z=Z_{c}+Z_{R}\left\|Z_{L}=1_{j o c}+R\right\| j \omega L
$$

Thus, the Eigen value of the linear operator:

$$
\mathcal{L}_{\mathcal{Z}}[i(t)]=v(t)
$$

For this one-port network is:

$$
G_{z}(\omega)=1 /{ }_{j \omega c}+R \| j \omega L
$$

No need for convolution!

Look what we did! We were able to determine $G_{z}(\omega)$ without explicitly determining impulse response $g_{z}(t)$, or having to perform any integrations!

Now, if we actually need to determine the voltage function $v(t)$ created by some arbitrary current function $i(t)$, we integrate:

$$
\begin{aligned}
& v(t)= \frac{1}{2 \pi} \int_{-\infty}^{+\infty} G_{\mathcal{Z}}(\omega) I(\omega) e^{j \omega t} d \omega \\
&=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}(1 / j \omega c+R \| j \omega L) I(\omega) e^{j \omega t} d \omega \\
& I(\omega)=\int_{-\infty}^{+\infty} i(t) e^{-j \omega t} d t
\end{aligned}
$$

where:

Otherwise, if our current function is time-harmonic (i.e., sinusoidal with frequency ω), we can simply relate complex current I and complex voltage V with the equation:

$$
\begin{aligned}
V & =Z I \\
& =(1 / j \omega+R \| j \omega L) I
\end{aligned}
$$

See how easy this is?

Similarly, for our two-port example, we can likewise determine from basic circuit theory the Eigen value of linear operator:

$$
\mathcal{L}_{21}\left[v_{1}(t)\right]=v_{2}(t)
$$

is:

$$
G_{21}(\omega)=\frac{Z_{L} \| Z_{R}}{Z_{C}+Z_{L} \| Z_{R}}=\frac{j \omega L \| R}{\frac{1}{j \omega C}+j \omega L \| R}
$$

so that:

$$
V_{2}=G_{21}(\omega) V_{1}
$$

or more generally:

$$
v_{2}(t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} G_{21}(\omega) V_{1}(\omega) e^{j \omega t} d \omega
$$

where:

$$
V_{1}(\omega)=\int_{-\infty}^{+\infty} v_{1}(t) e^{-j \omega t} d t
$$

Eigen Values of the Laplace

Transform

Well, I fibbed a little when I stated that the Eigen function of linear, time-invariant systems (circuits) is:

$$
\mathcal{L}\left\{e^{j \omega t}\right\}=\boldsymbol{G}(\omega) e^{j \omega t}
$$

Instead, the more general Eigen function is:

$$
\mathcal{L}\left\{e^{s t}\right\}=G(s) e^{s t}
$$

Where s is a complex (i.e., real and imaginary) frequency of the form:

$$
s=\sigma+j \omega
$$

such that:

$$
e^{s t}=e^{(\sigma+j \omega) t}=e^{\sigma t} e^{j \omega t}
$$

Note then, if $\sigma=0$, the Eigen function $e^{s t}$ becomes the previously described Eigen function $e^{j \omega t}$!

What does this function mean?

Q: Yikes! I understand $e^{\text {st }}$ even less than I understood $e^{j \omega t}$! What does this function mean?

A: Remember, the function $e^{s t}$ is a complex function-it is actually an expression of two real-value functions.

These two real-valued functions could be its real and imaginary components:

$$
\begin{aligned}
e^{s t} & =e^{\sigma t} e^{+j \omega t} \\
& =e^{\sigma t}(\cos \omega t+j \sin \omega t) \\
& =e^{\sigma t} \cos \omega t+j e^{\sigma t} \sin \omega t
\end{aligned}
$$

Magnitude and phase

Or, the two real-valued functions could alternatively be the complex values magnitude and phase:

If $\sigma=0$, then $e^{s t}=e^{+j \omega t}$, and we're back to the time-harmonic Eigen function:

Can we use this as a basis?

Q: What about basis functions? Can we use these Eigen function to expand a signal?

A: Sure! Instead of the Fourier Transform, the result of expanding a signal with basis function $e^{s t}$ is the Laplace Transform.

For example, again consider the following linear circuit:

A summary

Using the Laplace transform, we can determine the output voltage $v_{2}(t)$ by:

1. Expand the input signal $v_{1}(t)$ using the basis function $e^{s t}$:

$$
V_{1}(s)=\int_{0}^{+\infty} v_{1}(t) e^{-s t} d t \quad \text { (or use a look-up table!) }
$$

2. Determine the Eigen value of the linear operator relating $v_{1}(t)$ to $v_{2}(t)$:

$$
\begin{aligned}
& v_{2}(t)=\mathcal{L}\left\{v_{1}(t)\right\}=\int_{-\infty}^{\infty} g\left(t-t^{\prime}\right) v_{1}\left(t^{\prime}\right) d t^{\prime} \\
& \Rightarrow \quad V_{2}(s)=G(s) v_{1}(s)
\end{aligned}
$$

where:

$$
G(s)=\int_{-\infty}^{+\infty} g(t) e^{-s t} d t
$$

3. Determine $v_{2}(t)$ from the inverse Laplace transform of $V_{2}(s)$ (definitely use a look-up table!).

The Eigen values of circuit elements

Q: But how do we determine $G(s)$?

A: It's just pretty darn simple!
Again, we determine the Eigen value of each linear operator of our three linear circuit elements-only this time we use the Eigen function $e^{s t}$!

$$
\begin{aligned}
& i_{R}(t)=\mathcal{L}_{y}^{R}\left[v_{R}(t)\right]=\frac{v_{R}(t)}{R} \underset{\longrightarrow}{\stackrel{i_{R}(t)}{\longrightarrow}} \\
& \mathcal{L}_{y}^{R}\left[e^{s t}\right]=\frac{e^{s t}}{R} \\
& v_{R}(t) \\
& I_{R}(s)=\frac{V_{R}(s)}{R} \\
& \xrightarrow{i_{c}(t)} \quad i_{c}(t)=\mathcal{L}_{y}^{c}\left[v_{c}(t)\right]=C \frac{d v_{c}(t)}{d t} \\
& \begin{array}{c}
v_{c}(t) \quad \frac{1}{\square} \mathcal{L}_{y}^{c}\left[e^{s t}\right]=C \frac{d e^{s t}}{d t}=s C e^{s t} \\
I_{c}(s)=S C V_{c}(s)
\end{array}
\end{aligned}
$$

Just apply your circuits knowledge!

$$
\begin{array}{cc}
\mathcal{L}_{y}^{L}\left[v_{L}(t)\right]=i_{L}(t)=\frac{1}{L} \int_{-\infty}^{t} v_{L}\left(t^{\prime}\right) d t^{\prime} & \stackrel{+}{i_{L}(t)} \\
\mathcal{L}_{y}^{L}\left[e^{s t}\right]=\frac{1}{L} \int_{-\infty}^{t} e^{s t} d t^{\prime}=\frac{1}{s L} e^{s t} & v_{L}(t) \quad< \\
I_{L}(s)=\frac{V_{L}(s)}{s L} & -
\end{array}
$$

As a result we can determine the Eigen value $G(s)$ of a linear circuit by applying our circuit theory:

Frequency Bands

The Eigen value $G(\omega)$ of a linear operator is of course dependent on frequency ω-the numeric value of $G(\omega)$ depends on the frequency ω of the basis function $e^{j \omega t}$.

Frequency Response

The frequency ω has units of radians/second; it can likewise be expressed as:

$$
\omega=2 \pi f
$$

where f is the sinusoidal frequency in cycles/second (i.e., Hertz).
As a result, the function $G(\omega)$ is also known as the frequency response of a linear operator (e.g. a linear circuit).

The numeric value of the signal frequency f has significant practical ramifications to us electrical engineers, beyond that of simply determining the numeric value $G(\omega)$.

These practical ramifications include the packaging, manufacturing, and interconnection of electrical and electronic devices.

The problem is that every real circuit is awash in inductance and capacitance!

Those darn parasitics!

Q: If this is such a problem, shouldn't we just avoid using capacitors and inductors?

A: Well, capacitors and inductors are particular useful to us EE's.

But, even without capacitors and inductors, we find that our circuits are still awash in capacitance and inductance!

Q: ???
A: Every circuit that we construct will have a inherent set of parasitic inductance and capacitance.

Parasitic inductance and capacitance is associated with elements other than capacitors and inductors!

Every wire an inductor

For example, every wire and lead has a small inductance associated with it:

Seems simple enough...

Consider then a "wire" above a ground plane:

From KVL and KCL, we "know" that:

$$
V_{1}=V_{2} \quad I_{1}=I_{2}
$$

Thus, the linear operator (for example) relating voltage V_{1} to voltage V_{2} has an
Eigen value equal to 1.0 for all frequencies:

$$
\frac{V_{2}}{V_{1}}=G(\omega)=1.0
$$

...but its harder than you thought!

But, the unfortunate reality is that the "wire" exhibits inductance, and likewise a capacitance between it and the ground plane

We now see that the in fact the currents and voltage must be dissimilar:

$$
V_{1} \neq V_{2} \quad I_{1} \neq I_{2}
$$

And so the Eigen value of the linear operator is not equal to 1.0!

$$
\frac{V_{2}}{V_{1}}=G(\omega) \neq 1.0
$$

The parasitics are small

Now, these parasitic values of L and C are likely to be very small, so that if the frequency is "low" the inductive impedance is quite small:

$$
|j \omega L| \ll 1 \quad \text { (almost a short circuit!) }
$$

And, the capacitive impedance (if the frequency is low) is quite large:

$$
|-j / w c| \ll 1 \quad \text { (almost an open circuit!) }
$$

Thus, a low-frequency approximation of our wire is thus:

Which leads to our original KVL and KCL conclusion:

$$
V_{1}=V_{2} \quad I_{1}=I_{2}
$$

Parasitics are a problem at

"high" frequencies

Thus, as our signal frequency increases, the we often find that the "frequency response" $G(\omega)$ will in reality be different from that predicted by our circuit model-unless explicit parasitics are considered in that model.

As a result, the response $G(\omega)$ may vary from our expectations as the signal frequency increases!

Frequency Bands

For frequencies in the kilohertz (audio band) of megahertz (video band), parasitics are generally not a problem.

However, as we move into the 100's of megahertz, or gigahertz (RF and microwave bands), the effects of parasitic inductance and capacitance are not only significant-they're unavoidable!

Impedance and Admittance Parameters

Say we wish to connect the output of one circuit to the input of another.

The terms "input" and "output" tells us that we wish for signal energy to flow from the output circuit to the input circuit.

Energy flows from source to load

In this case, the first circuit is the source, and the second circuit is the load.

Each of these two circuits may be quite complex, but we can always simply this problem by using equivalent circuits.

Load is the input impedance

For example, if we assume time-harmonic signals (i.e., eigen functions!), the load can be modeled as a simple lumped impedance, with a complex value equal to the input impedance of the circuit.

Equivalent Circuits

The source circuit can likewise be modeled using either a Thevenin's or Norton's equivalent.

This equivalent circuit can be determined by first evaluating (or measuring) the open-circuit output voltage $V_{\text {out }}^{\text {oc }}$:

And likewise evaluating (or measuring) the short-circuit output current $I_{\text {out }}^{\text {sc }}$:

Thevenin's

From these two values ($V_{\text {out }}^{o c}$ and $I_{\text {out }}^{s c}$) we can determine the Thevenin's equivalent source:

$$
V_{g}=V_{o u t}^{o c} \quad Z_{g}=\frac{V_{o c t}^{o c t}}{I_{o u t}^{s c}}
$$

$$
\begin{aligned}
& V_{\text {out }}=V_{g}-Z_{g} I_{\text {out }} \\
& I_{\text {out }}=\frac{V_{g}-V_{\text {out }}}{Z_{g}}
\end{aligned}
$$

Norton's

Or, we could use a Norton's equivalent circuit:

$$
I_{g}=I_{o u t}^{s c} \quad Z_{g}=\frac{V_{o c t}^{o c}}{I_{o u t}^{s c}}
$$

$$
\begin{aligned}
& I_{\text {out }}=I_{g}-V_{\text {out }} / Z_{g} \\
& V_{\text {out }}=\left(I_{g}-I_{\text {out }}\right) Z_{g}
\end{aligned}
$$

Circuit Model

Can be modeled with equivalent circuits as:

Circuit \#2 (load)

Please note again that we have assumed a time harmonic source, such that all the values in the circuit above ($V_{g}, Z_{g}, I, V, Z_{L}$) are complex (i.e., they have a magnitude and phase).

Two-Port circuits

Q: But, circuits like filters and amplifiers are two-port devices, they have both an input and an output. How do we characterize a two-port device?

A: Indeed, many important components are two-port circuits.
For these devices, the signal power enters one port (i.e., the input) and exits the other (the output).

Between source and load

These two-port circuits typically do something to alter the signal as it passes from input to output (e.g., filters it, amplifies it, attenuates it).

We can thus assume that a source is connected to the input port, and that a load is connected to the output port.

How to characterize?

Again, the source circuit may be quite complex, consisting of many components. However, at least one of these components must be a source of energy.

Likewise, the load circuit might be quite complex, consisting of many components. However, at least one of these components must be a sink of energy.

Q: But what about the two-port circuit in the middle? How do we characterize it?

A: A linear two-port circuit is fully characterized by just four impedance parameters!

Do this little experiment

Note that inside the "blue box" there could be anything from a very simple linear circuit to a very large and complex linear system.

Now, say there exists a non-zero current at input port 1 (i.e., $I_{1} \neq 0$), while the current at port 2 is known to be zero (i.e., $I_{2}=0$).

Say we measure/determine the current at port 1 (i.e., determine I_{1}), and we then measure/determine the voltage at the port 2 plane (i.e., determine V_{2}).

Impedance parameters

The complex ratio between V_{2} and I_{1} is know as the trans-impedance parameter Z_{21} :

$$
Z_{21}(\omega)=\frac{V_{2}(\omega)}{I_{1}(\omega)}
$$

Note this trans-impedance parameter is the Eigen value of the linear operator relating current $i_{1}(t)$ to voltage $v_{2}(t)$:

Thus:

$$
G_{21}(\omega)=Z_{21}(\omega)
$$

Likewise, the complex ratio between V_{1} and I_{1} is the trans-impedance parameter Z_{11} :

$$
Z_{11}(\omega)=\frac{V_{1}(\omega)}{I_{1}(\omega)}
$$

A second experiment

Now consider the opposite situation, where there exists a non-zero current at port 2 (i.e., $I_{2} \neq 0$), while the current at port 1 is known to be zero (i.e., $I_{2}=0$).

The result is two more impedance parameters:

$$
Z_{12}(\omega)=\frac{V_{1}(\omega)}{I_{2}(\omega)} \quad Z_{22}(\omega)=\frac{V_{2}(\omega)}{I_{2}(\omega)}
$$

Thus, more generally, the ratio of the current into port n and the voltage at port m is:

$$
Z_{m n}=\frac{V_{m}}{I_{n}} \quad \text { (given that } I_{k}=0 \text { for } k \neq n \text {) }
$$

Open circuits enforce $I=0$

A: Place an open circuit at that port!
Placing an open at a port (and it must be at the port!) enforces the
 condition that $I=0$.

Now, we can thus equivalently state the definition of trans-impedance as:

$$
Z_{m n}=\frac{V_{m}}{I_{n}} \quad \text { (given that port } k \neq n \text { is open - circuited) }
$$

What's the point?

Q: As impossible as it sounds, this handout is even more pointless than all your previous efforts. Why are we studying this? After all, what is the likelihood that a device will have an open circuit on one of its ports?!

A: OK, say that neither port is open-circuited, such that we have currents simultaneously on both of the two ports of our device.

Since the device is linear, the voltage at one port is due to both port currents.
This voltage is simply the coherent sum of the voltage at that port due to each of the two currents!

Specifically, the voltage at each port can is:

$$
\begin{aligned}
& V_{1}=Z_{11} I_{1}+Z_{12} I_{2} \\
& V_{2}=Z_{21} I_{1}+Z_{22} I_{2}
\end{aligned}
$$

They're a function of frequency!

Thus, these four impedance parameters completely characterizes a linear, 2port device.

Effectively, these impedance parameters describes a 2-port device the way that Z_{L} describes a single-port device (e.g., a load)!

But beware! The values of the impedance matrix for a particular device or circuit, just like Z_{L}, are frequency dependent!

A complete equivalent circuit

Now, we can use our equivalent circuits to model this system:

Note in this circuit there are 4 unknown values-two voltages (V_{1} and V_{2}), and two currents (I_{1} and I_{2}).
\rightarrow Our job is to determine these 4 unknown values!

Let's do some algebra!

Let's begin by looking at the source, we can determine from KVL that:

$$
V_{g}-Z_{g} I_{1}=V_{1}
$$

And so with a bit of algebra:

$$
I_{1}=\frac{V_{g}-V_{1}}{Z_{g}} \quad(\leftarrow \text { look, Ohm's Law! }
$$

Now let's look at our two-port circuit. If we know the impedance matrix (i.e., all four trans-impedance parameters), then:

$$
\begin{aligned}
& V_{1}=Z_{11} I_{1}+Z_{12} I_{2} \\
& V_{2}=Z_{21} I_{1}+Z_{22} I_{2}
\end{aligned}
$$

Watch the minus sign!

Finally, for the load:

A: Be very careful with the notation.

Current I_{2} is defined as positive when it is flowing into the two port circuit. This is the notation required for the impedance matrix.

Thus, positive current I_{2} is flowing out of the load impedance-the opposite convention to Ohm's Law.

This is why the minus sign is required.

A very good thing

Now let's take stock of our results. Notice that we have compiled four independent equations, involving our four unknown values:

$$
\begin{aligned}
& I_{1}=\frac{V_{g}-V_{1}}{Z_{g}} \\
& I_{2}=-\frac{V_{2}}{Z_{L}}
\end{aligned}
$$

Q: Four equations and four unknowns! That sounds like a very good thing!

$$
V_{1}=Z_{11} I_{1}+Z_{12} I_{2}
$$

$V_{2}=Z_{21} I_{1}+Z_{22} I_{2}$
A: It is! We can apply a bit of algebra and solve for the unknown currents and voltages:

$$
\begin{array}{ll}
I_{1}=V_{g} \frac{Z_{22}+Z_{L}}{\left(Z_{11}+Z_{g}\right)\left(Z_{22}+Z_{L}\right)-Z_{12} Z_{21}} & I_{2}=-V_{g} \frac{Z_{21}}{\left(Z_{11}+Z_{g}\right)\left(Z_{22}+Z_{L}\right)-Z_{12} Z_{21}} \\
V_{1}=V_{g} \frac{Z_{11}\left(Z_{22}+Z_{L}\right)-Z_{12} Z_{21}}{\left(Z_{11}+Z_{g}\right)\left(Z_{22}+Z_{L}\right)-Z_{12} Z_{21}} & V_{2}=V_{g} \frac{Z_{L} Z_{21}}{\left(Z_{11}+Z_{g}\right)\left(Z_{22}+Z_{L}\right)-Z_{12} Z_{21}}
\end{array}
$$

Admittance Parameters

Q: Are impedance parameters the only way to characterize a 2-port linear circuit?

A: Hardly! Another method uses admittance parameters.
The elements of the Admittance Matrix are the trans-admittance parameters $Y_{m n}$, defined as:

$$
Y_{m n}=\frac{I_{m}}{V_{n}} \quad \text { (given that } \quad V_{k}=0 \text { for } k \neq n \text {) }
$$

Note here that the voltage at one port must be equal to zero. We can ensure that by simply placing a short circuit at the zero-voltage port!

Short circuits enforce $V=0$

Now, we can equivalently state the definition of trans-admittance as:

$$
Y_{m n}=\frac{V_{m}}{I_{n}} \quad \text { (given that all ports } k \neq n \text { are short - circuited) }
$$

Just as with the trans-impedance values, we can use the trans-admittance values to evaluate general circuit problems, where none of the ports have zero voltage.

Since the device is linear, the current at any one port due to all the port currents is simply the coherent sum of the currents at that port due to each of the port voltages!

$$
\begin{aligned}
& I_{1}=Y_{11} V_{1}+Y_{12} V_{2} \\
& I_{2}=Y_{21} V_{1}+Y_{22} V_{2}
\end{aligned}
$$

Amplifiers

An ideal amplifier is a two-port circuit that takes an input signal $v_{\text {in }}(t)$ and reproduces it exactly at its output, only with a larger magnitude!

The real value A_{v} is the open-circuit voltage gain of this ideal amplifier, and has a magnitude much larger than unity $(\mathcal{A v o} \gg 1)$.

We actually can find $g(t)$!

Now, let's express this result using our knowledge of linear circuit theory!
Recall, the output $v_{\text {out }}(t)$ of a linear device can be determined by convolving its input $v_{\text {in }}(t)$ with the device impulse response $g(t)$:

$$
v_{\text {out }}(t)=\int_{-\infty}^{t} g\left(t-t^{\prime}\right) v_{\text {in }}\left(t^{\prime}\right) d t^{\prime}
$$

Q: Yikes! What is the impulse response of this ideal amp? How can we determine it?

A: It's actually quite simple!
Remember, the impulse response of linear circuit is just the output that results when the input is an impulse function $\delta(t)$.

Every function an Eigen function

Since the output of an ideal amplifier is just the input multiplied by $\boldsymbol{A}_{v_{o}}$, we conclude if $v_{i n}(t)=\delta(t)$:

$$
g(t)=v_{\text {out }}(t)=A_{v o} \delta(t)
$$

Thus:

$$
\begin{aligned}
v_{\text {out }}(t) & =\int_{-\infty}^{t} g\left(t-t^{\prime}\right) v_{\text {in }}\left(t^{\prime}\right) d t^{\prime} \\
& =\int_{-\infty}^{+} A_{o} \delta\left(t-t^{\prime}\right) v_{\text {in }}\left(t^{\prime}\right) d t^{\prime} \\
& =A_{o} \int_{-\infty}^{t} \delta\left(t-t^{\prime}\right) v_{\text {in }}\left(t^{\prime}\right) d t^{\prime} \\
& =A_{0} v_{\text {in }}(t)
\end{aligned}
$$

\rightarrow Any and every function $v_{i n}(t)$ is an Eigen function of an ideal amplifier!!

And now the Eigen value

Now, we can determine the Eigen value of this linear operator relating input to output:

$$
v_{\text {out }}(t)=\mathcal{L}\left\{v_{\text {in }}(t)\right\}
$$

Recall this Eigen value is found from the Fourier transform of the impulse response:

$$
\begin{aligned}
G(\omega) & =\int_{-\infty}^{\infty} h(t) e^{-j \omega t} d t \\
& =\int_{-\infty}^{\infty} A_{v o} \delta(t) e^{-j \omega t} d t \\
& =A_{v o}+j 0 \\
& =A_{v 0} e^{j 0}
\end{aligned}
$$

This result, although simple, has an interesting interpretation...

DC to daylight

...it means that the amplifier exhibits gain of $A_{v o}$ for sinusoidal signals of any and all frequencies!

BUT, there is one big problem with an ideal amplifier:
They are impossible to build!!

Real amplifier have finite bandwidths

The ideal amplifier has a frequency response of $|G(\omega)|=A_{\text {vo }}$.

Note this means that the amplifier gain is $\boldsymbol{A}_{v o}$ for all frequencies $0<\omega<\infty$ (D.C. to daylight!).

The bandwidth of the ideal amplifier is therefore infinite!

* Since every electronic device will exhibit some amount of inductance, capacitance, and resistance, every device will have a finite bandwidth.
* In other words, there will be frequencies ω where the device does not work!
* From the standpoint of an amplifier, "not working" means $|G(\omega)| \ll A_{\text {oo }}$ (i.e., low gain).
\rightarrow Amplifiers therefore have finite bandwidths.

Amplifier bandwidth
There is a range of frequencies ω between ω_{L} and ω_{H} where the gain will (approximately) be $A_{v o}$.

For frequencies outside this range, the gain will typically be small (i.e. $\left.|G(\omega)| \ll A_{v o}\right):$

$$
|G(\omega)|=\left\{\begin{array}{cc}
\approx A_{v o} & \omega_{L}<\omega<\omega_{H} \\
<A_{v_{0}} & \omega<\omega_{L}, \omega>\omega_{H}
\end{array}\right.
$$

The width of this frequency range is called the amplifier bandwidth:

Wideband is desirable

One result of a finite bandwidth is that the amplifier impulse response is not an impulse function!

$$
h(t)=\int_{-\infty}^{\infty} H(\omega) e^{+j \omega t} d t \neq A_{v o} \delta(t)
$$

therefore generally speaking:

$$
v_{\text {out }}(t) \neq A_{\text {vo }} v_{\text {in }}(t)!!
$$

However, if an input signal spectrum $V_{i n}(\omega)$ lies completely within the amplifier bandwidth, then we find that will (approximately) behave like an ideal amplifier:

$$
v_{\text {out }}(t) \cong A_{o o} v_{\text {in }}(t) \text { if } V_{\text {in }}(\omega) \text { is within the amplifier bandwidth }
$$

As a result, maximizing the bandwidth of an amplifier is a typically and important design goal!

Amplifier Gain

One interesting characteristic of an amplifier is that it is a unilateral device-it makes a big difference which end you use as the input!

Most passive linear circuits (e.g., using only R, L and C) are reciprocal. With respect to a 2-port device, reciprocity means:

$$
Z_{12}(\omega)=Z_{21}(\omega) \quad \text { and } \quad y_{12}(\omega)=Y_{21}(\omega)
$$

For example, consider these two open-circuit voltage measurements:

Most linear circuits are reciprocal...

If this linear two-port circuit is also reciprocal, then when the two currents I_{1} and I_{2} are equal, so too will be the resulting open-circuit voltages V_{1} and V_{2} !

Thus, a reciprocal 2-port circuit will have the property:

$$
V_{1}=V_{2} \quad \text { when } \quad I_{1}=I_{2}
$$

Note this would likewise mean that:

$$
\frac{V_{2}}{I_{1}}=\frac{V_{1}}{I_{2}}
$$

And since (because of the open-circuits!):

$$
V_{2}=Z_{21} I_{1} \quad \text { and } \quad V_{1}=Z_{12} I_{2}
$$

We can conclude from this "experiment" that these trans-impedance parameters of a reciprocal 2-port device are equal:

$$
Z_{12}(\omega)=Z_{21}(\omega)
$$

...but amplifiers are not!

Contrast this with an amplifier.
A current on the input port will indeed produce a voltage on an open-circuited output:

However, amplifiers are not reciprocal. Placing the same current at the output will not create the equal voltage on the input-in fact, it will produce no voltage at all!

Amps are unilateral: an input and output

Since for this open-circuited input port we know that:

$$
Z_{12}=\frac{V_{1}}{I_{2}},
$$

the fact that voltage produced at the input port is zero $\left(V_{1}=0\right)$ means the trans-impedance parameter Z_{12} is likewise zero (or nearly so) for unilateral amplifiers:

$$
Z_{12}(\omega)=0 \quad \text { (for amplifiers) }
$$

Thus, the two equations describing an amplifier (a two-port device) simplify nicely.

Here's the simplification

Beginning with:

$$
V_{1}=Z_{11} I_{1}+Z_{12} I_{2}
$$

$$
V_{2}=Z_{21} I_{1}+Z_{22} I_{2}
$$

Now since $Z_{12}=0$, we find:

$$
\begin{aligned}
& V_{1}=Z_{11} I_{1} \\
& V_{2}=Z_{21} I_{1}+Z_{22} I_{2}
\end{aligned}
$$

Q: Gee; I'm sort of unimpressed by this simplification-I was hoping the result would be a little more-simple.

A: Actually, the two equations above represent a tremendous simplification-it completely decouples the input port from the output, and it allows us to assign very real physical interpretations to the remaining impedance parameters!

To see all these benefits (try to remain calm), we will now make a few changes in the notation.

A slight change in notation

First we explicitly denote voltage V_{1} as $V_{\text {in }}$, and likewise V_{2} as $V_{\text {out }}$ (the same with currents I).

Additionally, we change the current definition at the output port, reversing the direction of positive current as flowing outward from the output port. Thus:

And so, a tidy summary:

The input is independent of the output!

From this summary, it is evident that the relationship between the input current and input voltage is determined by impedance parameter Z_{11}-and Z_{11} only:

$$
Z_{11}=\frac{V_{i n}}{I_{i n}}
$$

Thus, the impedance parameter Z_{11} is known as the input impedance $Z_{\text {in }}$ of an (unilatera!!) amplifier:

$$
Z_{i n}(\omega) \doteq \frac{V_{i n}(\omega)}{I_{i n}(\omega)}=Z_{11}(\omega)
$$

The open-circuit output voltage

Now, consider the case where the output port of the amplifier is open-circuited ($I_{\text {out }}=0$):

The (open-circuit) output voltage is therefore simply:

$$
\begin{aligned}
V_{\text {out }} & =Z_{21} I_{\text {in }}-Z_{22} I_{\text {out }} \\
& =Z_{21} I_{\text {in }}-Z_{22}(0) \\
& =Z_{21} I_{\text {in }}
\end{aligned}
$$

The open-circuit output voltage is thus proportional to the input current.

Open-circuit trans-impedance

The proportionality constant is the impedance parameter Z_{21}-a value otherwise known as the open-circuit trans-impedance Z_{m} :

$$
Z_{m}(\omega) \doteq \frac{V_{o t}^{o c}(\omega)}{I_{i n}(\omega)}=Z_{21}(\omega)
$$

Thus, an (unilateral!) amplifier can be described as:

$$
\begin{aligned}
& V_{\text {in }}=Z_{\text {in }} I_{\text {in }} \\
& V_{\text {out }}=Z_{m} I_{\text {in }}-Z_{22} I_{\text {out }}
\end{aligned}
$$

Short-circuit output current

Q: What about impedance parameter Z_{22}; does it have any physical meaning?

A: It sure does!

Consider now the result of short-circuiting the amplifier output $\left(\therefore V_{\text {out }}=0\right)$:

Since $V_{\text {out }}=0$:

$$
V_{\text {out }}=0=Z_{m} I_{\text {in }}-Z_{22} I_{\text {out }}^{s c}
$$

we can quickly determine the short-circuit output current:

$$
I_{\text {out }}^{s c}=\frac{Z_{m} I_{\text {in }}}{Z_{22}}
$$

The output impedance

Q: I'm not seeing the significance of this result!?

A: Let's rearrange to determine Z_{22} :

$$
Z_{22}=\frac{Z_{m} I_{\text {in }}}{I_{\text {out }}^{s c}}
$$

Note the numerator-it is the open-circuit voltage $V_{\text {out }}^{o c}=Z_{m} I_{i n}$, and so:

$$
Z_{22}=\frac{Z_{m} I_{\text {in }}}{I_{\text {out }}^{c c}}=\frac{V_{\text {out }}^{o c}}{I_{\text {out }}^{s c}}
$$

Of course, you remember that the ratio of the open-circuit voltage to shortcircuit current is the output impedance of a source:

$$
Z_{\text {out }} \doteq \frac{V_{\text {out }}^{o c}}{I_{\text {out }}^{s c}}=Z_{22}
$$

These equations look familiar!

Thus, the output impedance of an (unilateral) amplifier is the impedance parameter Z_{22}, and so:

$$
\begin{aligned}
& V_{\text {in }}=Z_{\text {in }} I_{\text {in }} \\
& V_{\text {out }}=Z_{m} I_{\text {in }}-Z_{\text {out }} I_{\text {out }}
\end{aligned}
$$

Q: It's déjà vu all over again; haven't we seen equations like this before?
A: Yes! Recall the first (i.e., input) equation:

$$
V_{i n}=Z_{i n} I_{i n}
$$

is that of a simple load impedance:

$$
V_{i n}=Z_{i n} I_{\text {in }}
$$

Looks like a Thevenin's source

And the second (i.e., output) amplifier equation:

$$
V_{\text {out }}=Z_{m} I_{\text {in }}-Z_{\text {out }} I_{\text {out }}
$$

is of the form of a Thevenin's source:
where:

$$
V_{g}=Z_{m} I_{\text {in }} \quad \text { and } \quad Z_{g}=Z_{\text {out }}
$$

An equivalent circuit model

We can combine these two observations to form an equivalent circuit model of an (unilateral) amplifier:

Note in this model, the output of the amp is a dependent Thevenin's sourcedependent on the input current!

Let's make the model more useful

Q: So, do we always use this equivalent circuit to model an amplifier?

A: Um, actually no.
The truth is that we EE's rarely use this equivalent circuit (not that there's anything wrong with it!).

Instead, the equivalent circuit we use involves a slight modification of the model above.

Relate the input voltage to output voltage

To see this modification, we insert the first (i.e., input) equation, expressed as:

$$
I_{i n}=\frac{V_{i n}}{Z_{i n}}
$$

into the second (i.e., output) equation:

$$
\begin{aligned}
V_{\text {out }} & =Z_{m} I_{\text {in }}-Z_{\text {out }} I_{\text {out }} \\
& =\left(\frac{Z_{m}}{Z_{\text {in }}}\right) V_{\text {in }}-Z_{\text {out }} I_{\text {out }}
\end{aligned}
$$

Thus, the open-circuit output voltage can alternatively be expressed in terms of the input voltage!

$$
V_{\text {out }}^{o c}=\left(\frac{Z_{m}}{Z_{\text {in }}}\right) V_{\text {in }}
$$

Note the ratio $Z_{m} / Z_{i n}$ is unitless (a coefficient!).

Open-circuit voltage gain

This coefficient is known as the open-circuit voltage gain $A_{v o}$ of an amplifier:

The open-circuit voltage gain $A_{\text {vo }}(\omega)$ is perhaps the most important of all amplifier parameters.

To see why, consider the amplifier equations in terms of this voltage gain:

$$
\begin{aligned}
& V_{\text {in }}=Z_{\text {in }} I_{\text {in }} \\
& V_{\text {out }}=A_{\text {o }} V_{\text {in }}-Z_{\text {out }} I_{\text {out }}
\end{aligned}
$$

A more "useful" equivalent circuit

The equivalent circuit described by these equations is:

In this circuit model, the output Thevenin's source is again dependent-but now it's dependent on the input voltage!

Thus, in this model, the input voltage and output voltage are more directly related.

Now let's consider admittance parameters

Q: Are these the only two was to model a unilateral amplifier?

A: Hardly! Consider now admittance parameters.
A voltage on the input port of an amplifier will indeed produce a short-circuit output current:

The unilateral amplifier

However, since amplifiers are not reciprocal, placing the same voltage at the output will not create the equal current at the input-in fact, it will produce no current at all!

This again shows that amplifiers are unilateral devices, and so we find that the trans-admittance parameter Y_{12} is zero:

$$
y_{12}(\omega)=0 \quad \text { (for amplifiers) }
$$

In terms of our new notation

Thus, the two equations using admittance parameters simplify to:

$$
\begin{aligned}
& I_{1}=Y_{11} V_{1} \\
& I_{2}=Y_{21} V_{1}+Y_{22} V_{2}
\end{aligned}
$$

with the same definitions of input and output current/voltage used previously:

Input admittance

As with impedance parameters, it is apparent from this result that the input port is independent from the output.

Specifically, an input admittance can be defined as:

$$
Y_{i n}(\omega) \doteq \frac{I_{i n}(\omega)}{V_{i n}(\omega)}=Y_{11}(\omega)
$$

Note that the input admittance of an amplifier is simply the inverse of the input impedance:

$$
Y_{\text {in }}(\omega)=\frac{I_{i n}(\omega)}{V_{i n}(\omega)}=\frac{1}{Z_{i n}(\omega)}
$$

And from this we can conclude that for a unilateral amplifier (but only because it's unilatera!!):

$$
y_{11}=\frac{1}{Z_{11}}
$$

Looks like a Norton's source!

Likewise, the second amplifier equation:

$$
I_{\text {out }}=-Y_{21} V_{\text {in }}-Y_{22} V_{\text {out }}
$$

is of the form of a Norton's source:

where:

$$
I_{g}=-y_{21} V_{i n} \quad \text { and } \quad Z_{g}=\frac{1}{Y_{22}}
$$

Short-circuit trans-admittance

More specifically, we can define a short-circuit trans-admittance:
and an output impedance:

$$
y_{m} \doteq-y_{21}
$$

so that the amplifier equations are now:

$$
\begin{aligned}
& I_{\text {in }}=V_{\text {in }} / Z_{\text {in }} \\
& I_{\text {out }}=Y_{m} V_{\text {in }}-V_{\text {out }} / Z_{\text {out }}
\end{aligned}
$$

Yet another equivalent circuit model

The equivalent circuit described by these equations is:

Note in this model, the output of the amp is a dependent Norton's sourcedependent on the input voltage.

However, this particular amplifier model is likewise seldom used.

Short-circuit current gain

Instead, we again insert the input equation:

Into the output equation:

$$
\begin{aligned}
I_{\text {out }} & =-Y_{21} V_{\text {in }}-V_{\text {out }} / Z_{\text {out }} \\
& =-\left(\frac{Y_{21}}{Y_{11}}\right) I_{\text {in }}-V_{\text {out }} / Z_{\text {out }}
\end{aligned}
$$

Note the ratio $-y_{21} / y_{11}$ is unitless (a coefficient!).
This coefficient is known as the short-circuit current gain $A_{i s}$ of an amplifier:

$$
A_{i s}(\omega) \doteq \frac{I_{o u t}^{s c}}{I_{i n}}=\frac{Y_{m}}{Y_{11}}=-\frac{Y_{21}}{Y_{11}}
$$

A useful equivalent circuit model

Thus, we can also express the amplifier port equations as:

$$
\begin{aligned}
& I_{\text {in }}=V_{\text {in }} / Z_{\text {in }} \\
& I_{\text {out }}=A_{\text {is }} I_{\text {in }}-V_{\text {out }} / Z_{\text {out }}
\end{aligned}
$$

So, the equivalent circuit described by these equations is the last of four we shall consider:

In this circuit model, the output Norton's source is again dependent-but now it's dependent on the input current!

Thus, in this model, the input current and output current are more directly related.

Circuit Models for Amplifiers

The two most important amplifier circuit models explicitly use the open-circuit voltage gain $A_{\text {vo }}$:

And the short-circuit current gain $A_{i s}$:

Just three values describe all!

In addition, each equivalent circuit model uses the same two impedance valuesthe input impedance $Z_{\text {in }}$ and output impedance $Z_{\text {out }}$.

Q: So what are these models good for?
A: Say we wish to analyze a circuit in which an amplifier is but one component.

Instead of needing to analyze the entire amplifier circuit, we can analyze the circuit using the (far) simpler equivalent circuit model.

For example, consider this audio amplifier design:

This might be on the final

Say we wish to connect a source (e.g., microphone) to its input, and a load (e.g., speaker) to its output:

Let's say on the EECS 412 final, I ask you to determine $V_{\text {out }}$ in the circuit above.

I'm not quite the jerk I appear to be!

Q: Yikes! How could we possibly analyze this circuit on an exam-it would take way too much time (not to mention way too many pages of work)?

A: Perhaps, but let's say that I also provide you with the amplifier input impedance $Z_{\text {in }}$, output impedance $Z_{\text {out }}$, and open-circuit voltage gain $A_{v o}$.

You thus know everything there is to know about the amplifier!
Just replace the amplifier with its equivalent circuit:

The relationship between input and output voltages

From input circuit, we can conclude (with a little help from voltage division):

$$
V_{\text {in }}=V_{g}\left(\frac{Z_{\text {in }}}{R_{1}+j \omega L_{1}+Z_{\text {in }}}\right)
$$

And the output circuit is likewise:
where:

$$
V_{\text {out }}=A_{\text {vo }} V_{\text {in }}\left(\frac{R_{2} \| j \omega L_{2}}{Z_{\text {out }}+R_{2} \| j \omega L_{2}}\right)
$$

$$
R_{2} \| j \omega L_{2}=\frac{j \omega R_{2} L_{2}}{R_{2}+j \omega L_{2}}
$$

The output is not open-circuited!

Q: Wait! I thought we could determine the output voltage from the input voltage by simply multiplying by the voltage gain $A_{\text {vo }}$. I am certain that you told us:

$$
V_{o u t}^{o c}=A_{v o} V_{\text {in }}
$$

A: I did tell you that! And this expression is exactly correct.
However, the voltage $V_{\text {out }}^{o c}$ is the open-circuit output voltage of the amplifier-in this circuit (like most amplifier circuits!), the output is not open!

Hence $V_{\text {out }} \neq V_{\text {out }}^{o c}$, and so:

$$
\begin{aligned}
V_{\text {out }} & =A_{\text {vo }} V_{\text {in }}\left(\frac{R_{2} \| j \omega L_{2}}{Z_{\text {out }}+R_{2} \| j \omega L_{2}}\right) \\
& =V_{\text {out }}^{o c}\left(\frac{R_{2} \| j \omega L_{2}}{Z_{\text {out }}+R_{2} \| j \omega L_{2}}\right) \\
& \neq V_{\text {out }}^{o c}
\end{aligned}
$$

We can define a voltage gain

Now, combining the two expressions, we have our answer:

$$
\begin{aligned}
V_{\text {out }} & =V_{g} A_{v o}\left(\frac{Z_{\text {in }}}{R_{1}+j \omega L_{1}+Z_{\text {in }}}\right)\left(\frac{R_{2} \| j \omega L_{2}}{Z_{\text {out }}+R_{2} \| j \omega L_{2}}\right) \\
& =A_{\text {vo }} V_{g}\left(\frac{Z_{\text {in }}}{R_{1}+j \omega L_{1}+Z_{\text {in }}}\right)\left(\frac{j \omega R_{2} L_{2}}{Z_{\text {out }}\left(R_{2}+j \omega L_{2}\right)+j \omega R_{2} L_{2}}\right)
\end{aligned}
$$

Now, be aware that we can (and often do!) define a voltage gain $A_{\text {, }}$ a value that is different from the open-circuit voltage gain of the amplifier.

For instance, in the above circuit example we could define a voltage gain as the ratio of the input voltage $V_{\text {in }}$ and the output voltage $V_{\text {out }}$:

$$
A_{v} \doteq \frac{V_{\text {out }}}{V_{\text {in }}}=A_{\text {vo }}\left(\frac{R_{2} \| j \omega L_{2}}{Z_{\text {out }}+R_{2} \| j \omega L_{2}}\right)=A_{\text {vo }}\left(\frac{j \omega R_{2} L_{2}}{Z_{\text {out }}\left(R_{2}+j \omega L_{2}\right)+j \omega R_{2} L_{2}}\right)
$$

Or we can define a different gain

Or, we could alternatively define voltage gain as the ratio of the source voltage V_{g} and the output voltage $V_{\text {out }}$:

$$
A \doteq \frac{V_{\text {out }}}{V_{g}}=A_{\text {vo }}\left(\frac{Z_{\text {in }}}{R_{1}+j \omega L_{1}+Z_{\text {in }}}\right)\left(\frac{j \omega R_{2} L_{2}}{Z_{\text {out }}\left(R_{2}+j \omega L_{2}\right)+j \omega R_{2} L_{2}}\right)
$$

Q: Yikes! Which result is correct; which voltage gain is "the" voltage gain?
A: Both are!
We can define a voltage gain A in any manner that is useful to us. However, we must make this definition explicit-precisely what two voltages are involved in the definition?
\rightarrow No voltage gain A is "the" voltage gain!
Note that the open-circuit voltage gain $A_{\text {vo }}$ is a parameter of the amplifier-and of the amplifier only!

The open-circuit gain is the amplifier gain

Contrast $A_{\text {oo }}$ to the two voltage gains defined above (i.e., $V_{\text {out }} / V_{\text {in }}$ and $V_{\text {out }} / V_{g}$).
In each case, the result-of course-depends on amplifier parameters ($A_{\text {oo }}, Z_{\text {in }}, Z_{\text {out }}$).

However, the results likewise depend on the devices (source and load) attached to the amplifier (e.g., $L_{1}, R_{1}, L_{2}, R_{2}$).
\rightarrow The only amplifier voltage gain is its open-circuit voltage gain $A_{v o}$!

The low-frequency model

Now, let's switch gears and consider low-frequency (e.g., audio and video) applications.

At these frequencies, parasitic elements are typically too small to have any practical significance.

Additionally, low-frequency circuits frequently employ no reactive circuit elements (no capacitor or inductors).

As a result, we find that the input and output impedances exhibit almost no imaginary (i.e., reactive) components:

$$
\begin{aligned}
& Z_{\text {in }}(\omega) \cong R_{\text {in }}+j 0 \\
& Z_{\text {out }}(\omega) \cong R_{\text {out }}+j 0
\end{aligned}
$$

We can express this in the time domain

Likewise, the voltage and current gains of the amplifier are (almost) purely real:

$$
\begin{aligned}
& A_{v o}(\omega) \cong A_{v o}+j 0 \\
& A_{s s}(\omega) \cong A_{s s}+j 0
\end{aligned}
$$

Note that these real values can be positive or negative.
The amplifier circuit models can thus be simplified-to the point that we can easily consider arbitrary time-domain signals (e.g., $v_{\text {in }}(t)$ or $i_{\text {out }}(t)$):

All real-valued

For this case, we find that the (approximate) relationships between the input and output are that of an ideal amplifier:

$$
\begin{aligned}
& v_{o u t}^{o c}(t)=\int_{-\infty}^{t} A_{v o} \delta\left(t-t^{\prime}\right) v_{\text {in }}\left(t^{\prime}\right)=A_{\text {vo }} v_{\text {in }}(t) \\
& i_{o u t}^{s c}(t)=\int_{-\infty}^{t} A_{i s} \delta\left(t-t^{\prime}\right) i_{\text {in }}\left(t^{\prime}\right)=A_{\text {is }} i_{\text {in }}(t)
\end{aligned}
$$

Specifically, we find that for these low-frequency models:

$$
\begin{array}{ll}
R_{\text {in }}=\frac{v_{\text {in }}(t)}{i_{\text {in }}(t)} & R_{\text {out }}=\frac{v_{\text {out }}^{o c}(t)}{i_{\text {out }}^{\text {sc }}(t)} \\
A_{\text {vo }}=\frac{v_{\text {out }}^{o c}(t)}{v_{\text {in }}(t)} & A_{\text {is }}=\frac{i_{\text {out }}^{\text {sc }}(t)}{i_{\text {in }}(t)}
\end{array}
$$

One important caveat here; this "low-frequency" model is applicable only for input signals that are likewise low-frequency-the input signal spectrum must not extend beyond the amplifier bandwidth.

Voltage is referenced to ground potential

Now one last topic.
Frequently, both the input and output voltages are expressed with respect to ground potential, a situation expressed in the circuit model as:

You'll often see this notation

Now, two nodes at ground potential are two nodes that are connected together! Thus, an equivalent model to the one above is:

Which is generally simplified to this model:

Current and Voltage Amplifiers

Q: I'll admit to being dog-gone confused.
You say that every amplifier can be described equally well in terms of either its open-circuit voltage gain $A_{\text {vo }}$, or its short-circuit current gain $A_{i s}$.

Yet, amps I have seen are denoted specifically as either a dad-gum current amplifier or a gul-darn voltage amplifier.

Are voltage and current amplifiers separate devices, and if so, what are the differences between them?

A: Any amplifier can be used as either a current amp or as a voltage amp.
However, we will find that an amp that works well as one does not generally work well as the other! Hence, we can in general classify amps as either voltage amps or current amps.

Define a gain

To see the difference we first need to provide some definitions.
First, consider the following circuit:

We define a voltage gain A_{v} as:

$$
\text { Q: Isn't that just } A_{v o} \text { ?? }
$$

$$
A \doteq \frac{v_{\text {out }}(t)}{v_{s}(t)}
$$

A: NO! Notice that the output of the amplifier is not open circuited.

This is what the model is for

Likewise, the source voltage v_{s} is not generally equal to the input voltage $v_{\text {in }}$.
We must use a circuit model to determine voltage gain A_{v}.
Although we can use either model, we will find it easier to analyze the voltage gain if we use the model with the dependent voltage source:

Analyzing the input section of this circuit, we find:

$$
v_{i n}=\left(\frac{R_{i n}}{R_{s}+R_{i n}}\right) v_{s}
$$

$$
v_{\text {out }}=\left(\frac{R_{L}}{R_{\text {out }}+R_{L}}\right) A_{\text {vo }} v_{\text {in }}
$$

combining the two expressions we get:

$$
v_{\text {out }}=\left(\frac{R_{L}}{R_{\text {out }}+R_{L}}\right) A_{\text {vo }}\left(\frac{R_{\text {in }}}{R_{s}+R_{\text {in }}}\right) v_{s}
$$

and therefore the voltage gain A_{v} is:

$$
A_{v} \doteq \frac{v_{\text {out }}(t)}{v_{s}(t)}=\left(\frac{R_{L}}{R_{\text {out }}+R_{L}}\right) A_{v o}\left(\frac{R_{\text {in }}}{R_{s}+R_{\text {in }}}\right)
$$

How to maximize voltage gain

Note in the above expression that the first and third product terms are limited:

$$
0 \leq\left(\frac{R_{L}}{R_{\text {out }}+R_{L}}\right) \leq 1 \quad \text { and } \quad 0 \leq\left(\frac{R_{\text {in }}}{R_{s}+R_{\text {in }}}\right) \leq 1
$$

We find that each of these terms will approach their maximum value (i.e., one) when:

$$
R_{\text {out }} \ll R_{L} \quad \text { and } \quad R_{\text {in }} \gg R_{s}
$$

Thus, if the input resistance is very large ($\gg R_{s}$) and the output resistance is very small ($\ll R_{L}$), the voltage gain for this circuit will be maximized and have a value approximately equal to the open-circuit voltage gain!

$$
v_{0} \approx A_{v o} v_{s} \text { iff } R_{\text {out }} \ll R_{L} \text { and } R_{\text {in }} \gg R_{s}
$$

A good voltage amplifier

Thus, we can infer three characteristics of a good voltage amplifier:

1. Very large input resistance $\left(R_{i n} \gg R_{s}\right)$.
2. Very small output resistance ($R_{\text {out }} \ll R_{L}$).
3. Large open-circuit voltage gain $\left(A_{v o} \gg 1\right)$.

Now for current gain

Now let's consider a second circuit:

We define current gain A_{i} as:

$$
A_{i} \doteq \frac{i_{\text {out }}(t)}{i_{s}(t)}
$$

Note that this gain is not equal to the short-circuit current gain $A_{\text {is }}$. This current gain A_{i} depends on the source and load resistances, as well as the amplifier parameters.

Therefore, we must use a circuit model to determine current gain A_{i}.

Use the other model

Although we can use either model, we will find it easier to analyze the current gain if we use the model with the dependent current source:

Analyzing the input section, we can use current division to determine:

$$
i_{i n}=\left(\frac{R_{s}}{R_{s}+R_{i n}}\right) i_{s}
$$

We likewise can use current division to analyze the output section:

$$
i_{\text {out }}=\left(\frac{R_{\text {out }}}{R_{\text {out }}+R_{L}}\right) A_{\text {is }} i_{\text {in }}
$$

How to maximize current gain

Combining these results, we find that:

$$
i_{\text {out }}=\left(\frac{R_{\text {out }}}{R_{\text {out }}+R_{L}}\right) A_{\text {is }}\left(\frac{R_{s}}{R_{s}+R_{\text {in }}}\right) i_{s}
$$

and therefore the current gain A_{i} is:

$$
A_{i} \doteq \frac{i_{o}(t)}{i_{s}(t)}=\left(\frac{R_{\text {out }}}{R_{\text {out }}+R_{L}}\right) A_{\text {is }}\left(\frac{R_{s}}{R_{s}+R_{\text {in }}}\right)
$$

Note in the above expression that the first and third product terms are limited:

$$
0 \leq\left(\frac{R_{\text {out }}}{R_{\text {out }}+R_{L}}\right) \leq 1 \quad \text { and } \quad 0 \leq\left(\frac{R_{s}}{R_{s}+R_{\text {in }}}\right) \leq 1
$$

We find that each of these terms will approach their maximum value (i.e., one) when:

$$
R_{\text {out }} \gg R_{L} \quad \text { and } \quad R_{\text {in }} \ll R_{s}
$$

The ideal current amp

Thus, if the input resistance is very small $\left(\ll R_{s}\right)$ and the output resistance is very large ($\gg R_{L}$), the voltage gain for this circuit will be maximized and have a value approximately equal to the short-circuit current gain!

$$
i_{\text {out }} \approx A_{\text {ss }} i_{s} \text { iff } R_{\text {out }} \gg R_{L} \text { and } R_{\text {in }} \ll R_{s}
$$

Thus, we can infer three characteristics of a good current amplifier:

1. Very small input resistance $\left(R_{i} \ll R_{s}\right)$.
2. Very large output resistance $\left(R_{0} \gg R_{L}\right)$.
3. Large short-circuit current gain ($A_{s} \gg 1$).

Note the ideal resistances are opposite to those of the ideal voltage amplifier!

You can trust ol' Roy!

Non-Linear Behavior of Amplifiers

Note that the ideal amplifier transfer function:

$$
v_{\text {out }}^{o c}(t)=A_{v} v_{i}(t)
$$

is an equation of a line (with slope $=A_{v o}$ and y-intercept $=0$).

The output voltage is limited

This ideal transfer function implies that the output voltage can be very large, provided that the gain $A_{v o}$ and the input voltage $v_{i n}$ are large.

However, we find in a "real" amplifier that there are limits on how large the output voltage can become.

The transfer function of an amplifier is more accurately expressed as:

$$
v_{\text {out }}(t)=\left\{\begin{array}{lc}
L_{+} & v_{\text {in }}(t)>L_{+}^{\text {in }} \\
\mathcal{A}_{\text {of }} v_{\text {in }}(t) & L_{-}^{\text {in }}<v_{\text {in }}(t)<L_{+}^{\text {in }} \\
L_{-} & v_{\text {in }}(t)<L_{-}^{\text {in }}
\end{array}\right.
$$

Amplifier saturation

This expression is shown graphically as:

This expression (and graph) shows that electronic amplifiers have a maximum and minimum output voltage (L_{+}and $L_{\text {- }}$).

If the input voltage is either too large or too small (too negative), then the amplifier output voltage will be equal to either L_{+}or $L_{\text {. }}$.

If $v_{\text {out }}=L_{+}$or $v_{\text {out }}=L_{\text {- }}$, we say the amplifier is in saturation (or compression).

Make sure the input isn't too large!

Amplifier saturation occurs when the input voltage is greater than:

$$
v_{i n}>\frac{L_{+}}{A_{o}} \doteq L_{+}^{\text {in }}
$$

or when the input voltage is less than:

$$
v_{\text {in }}<\frac{L}{A_{v o}} \doteq L_{-}^{\text {in }}
$$

Often, we find that these voltage limits are symmetric, i.e.:

$$
L=-L_{+} \quad \text { and } \quad L_{-}^{\text {in }}=-L_{+}^{\text {in }}
$$

For example, the output limits of an amplifier might be $L_{+}=15 \mathrm{~V}$ and $L_{-}=-15 \mathrm{~V}$.
However, we find that these limits are also often asymmetric (e.g., $L_{+}=+15 \mathrm{~V}$ and $L=+5 \mathrm{~V}$).

Saturation: Who really cares?

A distortion free example

For example, consider a case where the input to an amplifier is a triangle wave:

Since $L_{-}^{\text {in }}<V_{\text {in }}(t)<L_{+}^{\text {in }}$ for all time t, the output signal will be within the limits L_{+} and L. for all time t, and thus the amplifier output will be $v_{\text {out }}(t)=A_{v o} v_{\text {in }}(t)$:

The input is too darn big!

Consider now the case where the input signal is much larger, such that $v_{\text {in }}(t)>L_{+}^{\text {in }}$ and $v_{\text {in }}(t)<L_{-}^{\text {in }}$ for some time t (e.g., the input triangle wave exceeds the voltage limits $L_{+}^{\text {in }}$ and $L_{-}^{\text {in }}$ some of the time):

This is precisely the situation about which I earlier expressed caution.

We now must experience the palpable agony of signal distortion!

Palpable agony

Note that this output signal is not a triangle wave!
For time t where $v_{\text {in }}(t)>L_{+}^{\text {in }}$ and $v_{\text {in }}(t)<L_{-}^{\text {in }}$, the value $A_{\text {vo }} v_{\text {in }}(t)$ is greater than L_{+} and less than L, respectively.

Thus, the output voltage is limited to $v_{\text {out }}(t)=L_{+}$and $v_{\text {out }}(t)=L$ for these times.

As a result, we find that output $v_{\text {out }}(t)$ does not equal $A_{\text {oo }} v_{\text {in }}(t)$-the output signal is distorted!
"Soft" Saturation

In reality, the saturation voltages $L_{+}, L, L_{+}^{\text {in }}$, and $L_{-}^{\text {in }}$ are not so precisely defined.

The transition from the linear amplifier region to the saturation region is gradual, and cannot be unambiguously defined at a precise point.

Yet another problem: DC offset

Now for another non-linear problem!

We will find that many amplifiers exhibit a $D C$ offset (i.e., a $D C$ bias) at their output.

How do we define gain?

The output of these amplifiers can be expressed as:

$$
v_{\text {out }}(t)=A v_{\text {in }}(t)+V_{\text {off }}
$$

where A and $V_{\text {off }}$ are constants.

It is evident that if the input is zero, the output voltage will not be (zero, that is)!

$$
\text { i.e., } v_{\text {out }}=V_{\text {off }} \text { if } v_{\text {in }}=0
$$

Q: Yikes! How do we determine the gain of such an amplifier?
If: $\quad v_{\text {out }}(t)=A v_{\text {in }}(t)+V_{\text {off }}$
then what is:

$$
\frac{v_{\text {out }}(t)}{v_{\text {in }}(t)}=? ? ? ? ?
$$

The ratio of the output voltage to input voltage is not a constant!

Calculus: is there anything it can't do?

A: The gain of any amplifier can be defined more precisely using the derivative operator:

$$
A_{0} \doteq \frac{d v_{\text {out }}}{d v_{\text {in }}}
$$

Thus, for an amplifier with an output DC offset, we find the voltage gain to be:

$$
A_{\text {vo }}=\frac{d v_{\text {out }}}{d v_{\text {in }}}=\frac{d\left(A v_{\text {in }}+V_{\text {off }}\right)}{d v_{\text {in }}}=A
$$

In other words, the gain of an amplifier is determined by the slope of the transfer function!

This sort of makes sense!

For an amplifier with no DC offset (i.e., $v_{o}=\mathcal{A}_{0} v_{i}$), it is easy to see that the gain is likewise determined from this definition:

$$
A_{0}=\frac{d v_{\text {out }}}{d v_{\text {in }}}=\frac{d A_{\text {o }} v_{\text {in }}}{d v_{\text {in }}}=A_{0}
$$

Hey, hey! This definition makes sense if you think about itgain is the change of the output voltage with respect to a change at the input.

For example, of small change $\Delta v_{\text {in }}$ at the input will result in a change of $A_{v} \Delta v_{\text {in }}$ at the output.

If $A_{v o}$ is large, this change at the output will be large!

Both problems collide

OK, here's another problem.

The derivative of the transfer curve for real amplifiers will not be a constant.
We find that the gain of a amplifier will often be dependent on the input voltage!

The main reason for this is amplifier saturation.
Consider again the transfer function of amplifier that saturates:

Gain is a function of $v_{\text {in }}$

We find the gain of this amplifier by taking the derivative with respect to $v_{\text {in }}$:

$$
A_{o}=\frac{d v_{\text {out }}}{d v_{\text {in }}}=\left\{\begin{array}{cc}
0 & v_{\text {in }}>L_{+}^{\text {in }} \\
A & L_{-}^{\text {in }}<v_{\text {in }}<L_{+}^{\text {in }} \\
0 & v_{\text {in }}<L_{-}^{\text {in }}
\end{array}\right.
$$

Graphically, this result is:

You'll see this transfer function again!

Thus, the gain of this amplifier when in saturation is zero. A change in the input voltage will result in no change on the output-the output voltage will simply be $v_{0}=L_{\text {. }}$.

Again, the transition into saturation is gradual for real amplifiers.
In fact, we will find that many of the amplifiers studied in this class have a transfer function that looks something like this \rightarrow

We will find that the voltage gain of many amplifiers is dependent on the input voltage.

Thus, a DC bias at the input of the amplifier is often required to maximize the amplifier gain.

