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Amplifier Frequency Response

An ideal amplifier takes an input signal and reproduces it exactly at its output, only with a larger magnitude!
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Now, let’s express this result using our linear circuit theory !

Recall, the output 
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of a linear device can be determined by convolving its input 
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with the device impulse response 
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The impulse response for the ideal amplifier would therefore be:
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so that:
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We can alternatively represent the ideal amplifier response in the frequency domain, by taking the Fourier Transform  of the impulse response:
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This result, although simple, has an interesting interpretation.  It means that the amplifier exhibits gain of Avo for sinusoidal signals of any and all frequencies!  
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Moreover, the ideal amplifier does not alter the relative phase of the sinusoidal signal (i.e., no phase shift).

In other words, if:
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then at the output of the ideal amplifier we shall see:
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BUT, there is one big problem with an ideal amplifier:
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They are impossible to build !!


Q:  Why is that ??

A:   Two reasons:

a) An ideal amplifier has infinite bandwidth.

b)
An ideal amplifier has zero delay.

Not gonna happen !

Let’s look at this first problem first.  The ideal amplifier impulse response
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 means that the signal at the output occurs instantaneously with the signal at the input.  This of course cannot happen, as it takes some small, but non-zero amount of time for the signal to propagate through the amplifier.  A more realizable amplifier impulse response is:
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resulting in an amplifier output of:
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In other words, the output is both an amplified and delayed version of the input.  

*
Note the delay does not distort the signal, as the output has the same form as the input.

*
Moreover, the delay for electronic devices such as amplifiers is very small in comparison to human time scales (i.e., 
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).

*
Therefore, propagation delay 
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 is not considered a problem for most amplifier applications.

Let’s examine what this delay means in the frequency domain.


Evaluating the Fourier Transform of this modified impulse response gives:
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We see that, as with the ideal amplifier, the magnitude 
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.  However, the relative phase is now: 
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As a result, if 
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, the output signal will be:
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In other words, the output signal of a real amplifier is phase shifted with respect to the input.

In general, the amplifier phase shift 
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will not be a perfectly linear function (i.e., 
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), but instead will be a more general function of frequency 
Now, let’s examine the second problem with the ideal amplifier.  This problem is best discussed in the frequency domain.

We discovered that the ideal amplifier has a frequency response of 
[image: image22.wmf](

)

vo

TA

w

=

.  Note this means that the amplifier gain is Avo for all frequencies 
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  (D.C. to daylight !).  

The bandwidth of the ideal amplifier is therefore infinite !

*
Since every electronic device will exhibit some amount of inductance, capacitance, and resistance, every device will have a finite bandwidth.

*
In other words, there will be frequencies  where the device does not work !

*
From the standpoint of an amplifier, “not working” means 
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 (i.e., low gain).

*
Amplifiers will therefore have finite bandwidths. 

There is a range of frequencies 
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 between 
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 where the gain will (approximately) be Avo.  For frequencies outside this range, the gain will typically be small (i.e. 
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The width of this frequency range is called the amplifier bandwidth:
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One result of having a finite bandwidth is that the amplifier impulse response is not an impulse function !
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The ideal amplifier is not really possible!
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where Avo is the open-circuit voltage gain of the amplifier.
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