Section 5.4 - BJT Circuits at DC

Reading Assignment: pp. 421-436

To analyze a BJT circuit, we follow the **same** boring procedure as always: ASSUME, ENFORCE, ANALYZE and CHECK.

HO: Steps for D.C. Analysis of BJT Circuits

HO: Hints for BJT Circuit Analysis

For example:

Example: D.C. Analysis of a BJT Circuit

Example: An Analysis of a pnp BJT Circuit

Example: Another DC Analysis of a BJT Circuit

Example: A BJT Circuit in Saturation

<u>Steps for D.C. Analysis of</u> <u>BJT Circuits</u>

To analyze BJT circuit with D.C. sources, we **must** follow these **five steps**:

- 1. ASSUME an operating mode
- 2. ENFORCE the equality conditions of that mode.

3. ANALYZE the circuit with the enforced conditions.

- **4.** CHECK the inequality conditions of the mode for consistency with original assumption. If consistent, the analysis is complete; if inconsistent, go to step 5.
- 5. MODIFY your original assumption and repeat all steps.

Let's look at each step in detail.

1. ASSUME

We can ASSUME Active, Saturation, or Cutoff!

2. ENFORCE

<u>Active</u>

For active region, we must ENFORCE two equalities.

a) Since the base-emitter junction is **forward** biased in the active region, we ENFORCE these equalities:

$$V_{BE} = 0.7 \text{ V}$$
 (npn)

$$V_{EB} = 0.7 \text{ V} \text{ (pnp)}$$

b) We likewise know that in the **active** region, the base and collector currents are directly proportional, and thus we ENFORCE the equality:

$$\dot{i}_{c} = \beta \, \dot{i}_{B}$$

Note we can **equivalently** ENFORCE this condition with either of the the equalities:

$$i_{\mathcal{C}} = \alpha i_{\mathcal{E}}$$
 or $i_{\mathcal{E}} = (\beta + 1) i_{\beta}$

<u>Saturation</u>

For saturation region, we must likewise ENFORCE two equalities.

a) Since the base-emitter junction is **forward** biased, we again ENFORCE these equalities:

$$V_{BE} = 0.7 \text{ V}$$
 (npn)

$$V_{EB} = 0.7 \text{ V}$$
 (pnp)

b) Likewise, since the collector base junction is **reverse** biased, we ENFORCE these equalities:

$$V_{CB} = -0.5 \text{ V}$$
 (npn)

$$V_{BC} \simeq -0.5 \text{ V}$$
 (pnp)

Note that from **KVL**, the above two ENFORCED equalities will require that these equalities **likewise** be true:

$$V_{CE} = 0.2 \text{ V} \text{ (npn)}$$

$$V_{EC} = 0.2 \text{ V}$$
 (pnp)

Note that for saturation, you need to explicitly ENFORCE any **two** of these **three** equalities—the third will be ENFORCED **automatically** (via KVL)!!

To avoid **negative** signs (e.g., V_{CB} =-0.5), **I** typically ENFORCE the **first** and **third** equalities (e.g., V_{BE} = 0.7 and V_{CE} =0.2).

<u>Cutoff</u>

For a BJT in cutoff, both *pn* junctions are **reverse** biased—**no** current flows! Therefore we ENFORCE these equalities:

$$i_{\beta} = 0$$

 $i_{C} = 0$
 $i_{E} = 0$

3. ANALYZE

<u>Active</u>

The task in D.C. analysis of a BJT in **active** mode is to find **one** unknown **current** and **one** additional unknown **voltage**!

a) In addition the relationship $i_c = \beta i_\beta$, we have a **second** useful relationship: $i_F = i_c + i_\beta$ This of course is a consequence of KCL, and is true **regardless** of the BJT mode.

But think about what this means! We have **two** current equations and **three** currents (i.e., i_E , i_C , i_B)—we only need to determine **one** current and we can then immediately find the other two!

Q: Which current do we need to find?

A: Doesn't matter! For a BJT operating in the active region, if we know **one** current, we know them **all**!

b) In addition to $V_{BE} = 0.7$ ($V_{EB} = 0.7$), we have a second useful relationship:

$$V_{CE} = V_{CB} + V_{BE} \quad (npn)$$

$$V_{EC} = V_{EB} + V_{BC} \quad (pnp)$$

This of course is a consequence of KVL, and is true **regardless** of the BJT mode.

Combining these results, we find:

$$V_{CE} = V_{CB} + 0.7$$
 (npn)

$$V_{EC} = 0.7 + V_{BC} \quad (pnp)$$

But think about what **this** means! If we find **one** unknown voltage, we can immediately determine the **other**.

Therefore, a D.C. analysis problem for a BJT operating in the active region reduces to:

find one of these values

and find one of these values

$$V_{CE}$$
 or V_{CB} (V_{EC} or V_{BC})

 i_{B} , i_{C} , or i_{F}

<u>Saturation</u>

For the saturation mode, we know **all** the BJT **voltages**, but know nothing about BJT **currents**!

Thus, for an analysis of circuit with a BJT in saturation, we need to find any **two** of the **three** quantities:

i_b, i_c, i_e

We can then use KCL to find the third.

<u>Cutoff</u>

Cutoff is a bit of the **opposite** of saturation—we know **all** the BJT **currents** (they're all **zero**!), but we know **nothing** about BJT **voltages** ! Thus, for an analysis of circuit with a BJT in cutoff, we need to find any **two** of the **three** quantities:

 $V_{\scriptscriptstyle BE}, V_{\scriptscriptstyle CB}, V_{\scriptscriptstyle CE}$ (npn)

 V_{EB}, V_{BC}, V_{EC} (pnp)

We can then use KVL to find the third.

4. CHECK

You do not know if your D.C. analysis is correct unless you CHECK to see if it is consistent with your original assumption!

WARNING!-Failure to CHECK the original assumption will result in a SIGNIFICANT REDUCTION in credit on exams, regardless of the accuracy of the analysis !!!

Q: What exactly do we CHECK?

A: We ENFORCED the mode equalities, we CHECK the mode inequalities.

<u>Active</u>

We must CHECK **two** separate inequalities after analyzing a circuit with a BJT that we ASSUMED to be operating in **active** mode. One inequality involves BJT **voltages**, the other BJT **currents**.

is:

a) In the **active** region, the Collector-Base Junction is "off" (i.e., **reverse** biased). Therefore, we must CHECK our analysis results to see if they are **consistent** with:

$$V_{CB} > 0$$
 (npn)

$$V_{\scriptscriptstyle BC} > 0$$
 (pnp)

Since $V_{CE} = V_{CB} + 0.7$, we find that an **equivalent** inequality

$$V_{CE} > 0.7$$
 (npn)

$$V_{EC} > 0.7$$
 (pnp)

We need to check **only** one of these two inequalities (**not both**!).

b) In the active region, the Base-Emitter Junction is "on" (i.e., **forward** biased). Therefore, we must CHECK the results of our analysis to see if they are **consistent** with:

$$\dot{i_{B}} > 0$$

 $i_{\mathcal{C}} > 0$ and $i_{\mathcal{E}} > 0$

In other words, we need to CHECK and see if **any** one of the currents is positive—if one is positive, they are **all** positive!

<u>Saturation</u>

Here we must CHECK inequalities involving BJT currents.

a) We know that for saturation mode, the ratio of collector current to base current will be **less than beta**! Thus we CHECK:

$$i_{\mathcal{C}} < \beta \, i_{\mathcal{B}}$$

 b) We know that both pn junctions are forward biased, hence we CHECK to see if all the currents are positive:

$$i_{\beta} > 0$$

 $i_{c} > 0$

 $i_{F} > 0$

<u>Cutoff</u>

For **cutoff** we must CHECK two BJT **voltages**.

a) Since the EBJ is reverse biased, we CHECK:

$$V_{BE} < 0$$
 (npn)

$$V_{EB} < 0$$
 (pnp)

b) Likewise, since the CBJ is also reverse biased, we CHECK:

$$V_{CB} > 0$$
 (npn)
 $V_{BC} > 0$ (pnp)

If the results of our analysis are consistent with **each** of these inequalities, then we have made the **correct** assumption! The numeric results of our analysis are then likewise correct. We can stop working!

However, if **even one** of the results of our analysis is **inconsistent** with active mode (e.g., currents are negative, or $V_{CE} < 0.7$), then we have made the **wrong** assumption! Time to move to step 5.

5. MODIFY

If one or more of the BJTs are **not** in the active mode, then it must be in either **cutoff** or **saturation**. We must change our assumption and start **completely** over!

In general, **all** of the results of our previous analysis are incorrect, and thus must be **completely** scraped!

<u>Hints for BJT</u> <u>Circuit Analysis</u>

1. Know the BJT symbols and current/voltage definitions!

- Know what quantities must be determined for each assumption (e.g., for active mode, you must determine one BJT current and one BJT voltage).
- 3. Write **separate** equations for the BJT (device) and the remainder of the circuit (KVL, KCL, Ohm's Law).
- Write the KVL equation for the circuit's "Base-Emitter Leg". In other words, write a KVL that includes VBE.

- 5. Forget about what the problem is asking for! Just start by determining **any** and **all** the circuit quantities that you can. If you end up solving the **entire** circuit, the answer will in there somewhere!
- 6. If you get stuck, try working the problem **backward**! For example, to find a resistor value, you must find the voltage across it and the current through it.
- Make sure you are using all the information provided in the problem!

1/6

Let's ASSUME the BJT is in the ACTIVE region !

Remember, this is just a **guess**; we have no way of knowing for sure what mode the BJT is in at this point.

<u>Step 2</u> - ENFORCE the conditions of the assumed mode.

For active region, these are:

$$V_{BE} = 0.7 V$$
 and $I_{C} = \beta I_{B} = 99 I_{B}$

Step 3 - ANALYZE the circuit.

This is the **BIG** step !

Q: Where do we even start?

A: Recall what the hint sheet says:

"Write KVL equations for the base-emitter "leg"

I think we should try that !

<u>Example: An Analysis</u> of a *pnp* BJT Circuit

Determine the collector current and collector voltage of the BJT in the circuit below.

But wait ! We're **not** done yet ! We must **CHECK** our assumption.

First, i_B = 0.01 mA > 0 🗸

But, what is V_{EC} ??

Writing the emitter-collector KVL:

$$10.7 - 2i_F - V_{CF} - 4i_C = 0$$

Therefore,

Our assumption was correct !

<u>Example: Another DC</u> <u>Analysis of a BJT Circuit</u>

Find the collector voltages of the two BJTs in the circuit below.

ASSUME both BJTs are in active mode, therefore ENFORCE

$$V_{EB}^{1} = V_{EB}^{1} = 0.7 V$$
, i_{c1} = 100 i_{B1} , and i_{c2} = 100 i_{B2}

A: This seems to be a problem ! We cannot **easily** solve the emitter base KVL, as i_1 is NOT EQUAL to i_{E1} (make sure you understand this !). Instead, we find:

So, what do we do ?

1 K

β = 100

1 K

5.3 V-

 Q_1

i_{C1}

50 K

i_{B2}

First, ask the question: What do we know ??

Look closely at the circuit, it is apparent that $V_{B1} = 5.3$ V and $V_{E2} = 7.7$ V.

β = 100

İ_{C2}

Q₂

1.0 K

10.0 V 7.7 V Hey! We therefore also know V_{E1} and V_{B2}:

and

$$V_{E1} = V_{B1} + V_{EB}^{1} = 5.3 + 0.7 = 6.0 V$$

$$V_{B2} = V_{E2} - V_{EB}^2 = 7.7 - 0.7 = 7.0 V$$

Wow ! From these values we

get:
$$i_1 = \frac{10 - V_{E1}}{1} = \frac{10 - 6}{1} = 4 \text{ mA}$$

$$i_{B2} = \frac{V_{B2} - V_{E1}}{50} = \frac{7 - 6}{50} = 0.02 \text{ m/}$$

This is easy! Since we know i_1 and i_{B2} , we can **find** i_{E1} :

$$i_{E1} = i_1 + i_{B2} = 4.0 + 0.02 = 4.02 \text{ mA}$$

Since we know **one** current for each BJT, we know **all** currents for each BJT:

$$i_{c_1} = \alpha i_{E_1} = \frac{\beta}{\beta+1} i_{E_1} = \frac{100}{101} 4.02 = 3.98 \text{ mA}$$

$$i_{c2} = \beta i_{B2} = 100(0.02) = 2 \text{ mA}$$

Finally, we can determine the voltages V_{c1} and V_{c2} .

$$V_{C2} = 0.0 + 1 i_{C2} = 0.0 + 1(2.0) = 2.0 V$$

Now, let's CHECK to see if our assumptions were correct:

$$i_{c2} = 2mA > 0$$
 $i_{c1} = 3.98 mA > 0$

$$V_{EC}^{1} = V_{E1} - V_{C1} = 6.0 - 3.98 = 2.02 V > 0.7 V \sim$$

$$V_{BC}^2 = V_{B1} - V_{C1} = 7.0 - 2.0 = 5.0 V > 0 \checkmark$$

Assumptions are correct !

Example: A BJT Circuit in Saturation

Determine all currents for the BJT in the circuit below.

See! Base current $i_B = 23.8 \ \mu A$, just like before. Therefore collector current and emitter current are again $i_C = 99i_B = 2.356$ mA and $i_E = 100 \ i_B = 2.380$ mA. Right ?!

Well **maybe**, but we still need to CHECK to see if our assumption is correct!

We know that $i_B = 23.8 \ \mu A > 0 \checkmark$, but what about V_{CE} ?

From collector-emitter KVL we get:

$$10.7 - 10 i_{C} - V_{CF} - 2 i_{F} = 0$$

Therefore,

$$V_{CE} = 10.7 - 10(2.36) - 2(2.38) = -17.66 V < 0.7 V \times$$

Our assumption is wrong ! The BJT is not in active mode.

In the previous example, the collector resistor was 1K, whereas in this example the collector resistor is 10K. Thus, there is 10X the **voltage drop** across the collector resistor, which **lowers** the collector voltage so much that the BJT cannot remain in the active mode. Q: So what do we do now ?

A: Go to Step 5; change the assumption and try it again!

Lets ASSUME instead that the BJT is in **saturation**. Thus, we ENFORCE the conditions:

$$V_{CE} = 0.2 V$$
 $V_{BE} = 0.7 V$ $V_{CB} = -0.5 V$

Now lets ANALYZE the circuit !

Note that we **cannot** directly determine the currents, as we **do not** know the base voltage, emitter voltage, or collector voltage.

But, we **do** know the **differences** in these voltages!

For example, we know that the collector voltage is 0.2 V **higher** than the emitter voltage, but we **do not** know what the collector or emitter voltages are!

Q: So, how the heck do we ANALYZE this circuit !?

A: Often, circuits with BJTs in saturation are somewhat more difficult to ANALYZE than circuits with active BJTs. There are often many approaches, but all result from a logical, systematic application of Kirchoff's Laws!

ANALYSIS EXAMPLE 1 - Start with KCL

We know that $i_B + i_C = i_E$ (KCL)

But, what are i_B, i_C, and i_E??

Well, from Ohm's Law:

$$i_{B} = \frac{5.7 - V_{B}}{10}$$
 $i_{c} = \frac{10.7 - V_{C}}{10}$ $i_{E} = \frac{V_{E} - 0}{10}$

Therefore, combining with KCL:

$$\frac{5.7 - V_{\rm B}}{10} + \frac{10.7 - V_{\rm C}}{10} = \frac{V_{\rm E}}{10}$$

Look what we have, 1 equation and 3 unknowns.

We need 2 more independent equations involving V_B , V_C , and V_E !

Q: Two more independent equations !? It looks to me as if we have written all that we can about the circuit using Kirchoff's Laws.

A: True! There are no more **independent** circuit equations that we can write using KVL or KCL ! But, recall the hint sheet:

"Make sure you are using all available information".

There is more **information** available to us - the ENFORCED conditions!

$$V_{CE} = V_C - V_E = 0.2$$
 $V_C = V_E + 0.2$

$$V_{BE} = V_B - V_E = 0.7$$
 $V_B = V_E + 0.7$

Two more **independent** equations! Combining with the earlier equation:

$$\frac{5.7 - (0.7 + V_{\rm E})}{10} + \frac{10.7 - (0.2 + V_{\rm E})}{10} = \frac{V_{\rm E}}{10}$$

One equation and **one** unknown ! Solving, we get $V_E = 2.2 V$.

Inserting this answer into the above equations, we get:

$$V_{\rm B} = 2.9 \ {\rm V} - {\rm V}_{\rm C} = 2.4 \ {\rm V}$$

$$i_c = 0.83 \text{ mA}$$
 $i_B = 0.28 \text{ mA}$ $i_E = 1.11 \text{ mA}$

7/7

TKAL		
Try KCL !	$I_{B} + I_{C} = I_{E}$	

Inserting the KCL equation into the 2 KVL equations, we

get:

5.0 = 12 i_B + 2 i_C

Solving, we get the same answers as in analysis example 1.

Lesson: There are **multiple** strategies for analyzing these circuits; use the ones that you feel most **comfortable** with !

However you ANALYZE the circuit, you **must** in the end also CHECK your results.

First CHECK to see that **all** currents are **positive**:

 $i_{C} = 0.83 \text{ mA} > 0 \checkmark i_{B} = 0.28 \text{ mA} > 0 \checkmark i_{E} = 1.11 \text{ mA} > 0 \checkmark$

Also CHECK collector current:

Our solution is correct !!!