Bart has created a **new kind** of transistor for Springfield Elementary's science fair.

This transistor has three terminals, named Homer (H), Lisa (L), and Marge (M).

Bart has discovered in the lab that i_{H} (in mA) is related to v_{LM} (in volts) as:

$$i_{\rm H} = 3 (\nu_{\rm LM})^2 - 2 \nu_{\rm LM}$$
 (mA)

He has also discovered that i_{L} (in mA) is related to u_{LM} (in volts) as:

$$i_{\rm L} = 0.2 (\mu_{\rm LM})^2 + 0.3 \mu_{\rm LM}$$
 (mA)

Note that Bart's transistor is **completley unrelated** to either a BJT or a MOSFET.

Say that Bart has placed a **DC bais** voltage between terminals L and M of V_{LM} =3.0 V.

For this bias point, determine the **numeric** values of **small-signal** parmeters g_h and r_l , that Bart has **defined** as:

$$\mathcal{G}_h \doteq \frac{i_h}{v_{lm}}$$
 and $r_l \doteq \frac{v_{lm}}{i_l}$

where v_{in} is a small-signal voltage and i_h , i_l are small-signal currents.

