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D. Antenna Impedance 
 
An antenna, like any other microwave device, has an input 
impedance.  Although there are typically no resistors used 
antenna designs, an antenna impedance better have a real 
(resistive) component! 
 
HO: Antenna Impedance 
 
Antenna resistance has two components; the most important 
of which is the radiation resistance. 
 
HO: Radiation Resistance  
 
Given that antennas are not perfectly efficient, we find that a 
more useful, applicable, and measurable parameter than 
directivity is antenna gain.  
 
HO: Antenna Gain 
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Antenna Impedance 
 
Q:  Is the radiated power equal to the available power ( TxP )of 
the transmitter? 
 
A:  Ideally it is!  If TxradP P≠ , then some power is being 
wasted.  However, the perfectly ideal case of TxradP P= is not 
possible. 
 
As a result, we find that radP  will always be less (at least a 
little) than the available power TxP .  However, we find for well-
designed antenna that radP  will be very close to available power 

TxP .  
 
 
 
 
 
 
 
Q:  Why isn’t the radiated power equal to the available power 
of the transmitter? What happens to this available power? 
 
A:  One of two things, either: 
 
 1.  Power is reflected at the antenna. 
 
 2.  Power is turned to heat in a lossy antenna. 

Tx TxradP P<  

TxP  

0Z  
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GUMZ  
 

Let’s consider the first phenomenon first. 
 
Power is reflected at the antenna if the antenna impedance 

AZ  is not matched to the transmission line. 
 
Q:  Antenna impedance?  Does an antenna have an impedance? 

 
A:  An antenna is a one-port device—every 
one-port device has an impedance! 
 
The antenna impedance acts as the load at the 
end of a transmission line.  If 0AZ Z≠ , then 

power will be reflected, and the power delivered to the 
antenna ( AP ) will be less than the transmitter available power: 
 
 
 
 
 
 
 

Thus, all the available power is delivered to the 
antenna only if its impedance is: 

 
0 0A AZ Z= ⇒ Γ =  

 
Q:  Huh?? Characteristic impedance is a real value.  If 

0AZ Z= , then the antenna impedance is purely resistive. 
Wouldn’t a resistor make a particularly bad antenna? 

Tx ( )21A ATxP P= − Γ  

TxP  

0Z  AZ  

0AΓ ≠  
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A:  A resistor actually would make a particularly lousy 
antenna.  Yet, the impedance of an ideal antenna is purely 
resistive. 
 

 These statements are not contradictory!   
 
Remember, a real load can absorb incident energy, whereas a 
purely reactive load cannot.  For a reactive impedance, all 
incident power would be reflected—a purely reactive AZ  would 
result in 0AP = .   
 
 
 
 
 
 
 
Thus, it is imperative that the impedance of an antenna have a 
real component if we wish for it to absorb energy, with 
maximum power transfer occurring when 0AZ Z= . 
 
The difference between a resistor and an antenna, however, is 
what it does with this absorbed power. 
 

* A resistor will convert its absorbed power into heat. 
 

* An antenna will (ideally) convert its absorbed power 
into a propagating, spherical, electromagnetic wave! 

 

Tx 0AP =  

TxP  

0Z  AZ  

1AΓ =  



11/29/2006 Antenna Impedance 4/4 

Jim Stiles The Univ. of Kansas Dept. of EECS 

In other words, an antenna dissipates its absorbed power by 
radiating it into space. 
 
Q:  So does this mean that an antenna will reflect no power? 
 
A:  Generally speaking, antenna impedance will posses both a 
real and reactive component: 
 

A A AZ R jX= +  
 

Thus, we find antenna impedance—like all other antenna 
parameters—is frequency dependent.   
 
Q:  So how do we eliminate (or at least minimize) the 
reflected power?? 
 
A1:  Design the antenna such that 0AR Z= (e.g., 50Ω , 75Ω   
and then operate at a frequency ω  such that 0AX = . 
 
A2:  Implement a matching network! 
 
 

Tx 

TxP  

0Z  Matching 
Network 

0AΓ ≈  
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Radiation Resistance 
 
Q:  Does all the power absorbed by AR  get radiated (i.e., is 

radP  equal to AP )? 
 
A:  Generally speaking, no! 
 
Remember, there were two reasons why radiated power radP is 
less than the available transmitter power TxP . 
 

1.  Power is reflected at the antenna. 
 
2.  Power is turned to heat in a lossy antenna. 
 

From the first reason we have already determined that: 
 

( )21A ATxP P= − Γ  

 
But because of the second reason we find that: 
 

A radP P<  
 

Ideally, all of the power delivered to the antenna ( AP ) is 
radiated ( rad AP P= ).  However, antennas are made of materials 
with finite conductivity.  Therefore they exhibit Ohmic 
losses! 
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In other words, most of the absorbed power is radiated, but 
some of the absorbed power is converted to heat. 
 
Thus, we find absorbed power consists of two components: 
 

A L radP P P= +  
where: 

Power delivered to the antenna

Power converted to heat

Radiated Power

A

L

rad

P

P

P

=

=

=

 

 
Now, the power delivered to the antenna is the power 
absorbed by the antenna resistance AR .  We can likewise 
divide this resistance into two components: 
 
 

A L radR R R= +  
 
 
so that: 

A L AradZ R R jX= + +  
where: 
 

Ohmic Loss Resistance

Radiation Resistance

L

rad

R

R
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*  The radiation resistance is defined such that radiated 
power is equal to the power absorbed by radR . 
 
*  The Ohmic loss resistance is defined such that the power 
converted to heat is equal to the power absorbed by LR . 

 
Using our basic circuit theory we find: 
 

( )

2 21
2 2

A A
A

A L rad

V VP
R R R

= =
+

 

 
2

2
L

L
L

VP
R

=         
2

2
rad

rad
rad

V
P

R
=  

 
And from KCL: 
 

L L rad rad
L A A A Arad

L A L Arad rad

R RR RV V V V V V
R R R R R R

= = = =
+ +

 

 
Combining the above: 
 

22 2 2

22 2 2

2 2 2

2 2 2

L A AL L L
L A

L L A A A A

rad A Arad rad rad
Arad

A A A Arad rad

V V VR R RP P
R R R R R R

V V VR R RP P
R R R R R R

⎛ ⎞
= = = =⎜ ⎟

⎝ ⎠

⎛ ⎞
= = = =⎜ ⎟

⎝ ⎠

 

 
 

+ 
 

 
VA 
 

 

- 

+ 
VL 
- 
+ 

Vrad 
- 
 

RL 
 
 

Rrad 
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Note then, as expected: 
 

L rad
L A Arad

A A

L rad
A

A A

L rad
A

A

A
A

A

A

RRP P P P
R R

RRP
R R
R RP

R
RP
R

P

+ = +

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
⎛ ⎞+

= ⎜ ⎟
⎝ ⎠
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

=

 

 
Thus, rearranging the above results, we can determine 
resisitances LR  and radR : 
  

L L
L A L A

A A

rad rad
A Arad rad

A A

R PP P R R
R P

R PP P R R
R P

⎛ ⎞ ⎛ ⎞
= ⇒ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
= ⇒ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

 

 
Now, we  define antenna efficiency as: 
 
 

antenna  efficiencyrad

A

Pe
P

= =  
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* Note then if 1e = , then AradP P=  and so 0LP = . We say 
this antenna is 100% efficient.  

 
* And if 0e = 1e = , then 0radP =  and so L AP P= . We say this 

antenna is 0% efficient. 
 
We likewise find we can write the important antenna 
parameters in terms of this efficiency: 
 

( ) ( )1 1

A Arad rad

L A L A

P e P R e R

P P e R e R

= =

= − = −

 

 
So, in summary: 
 

( )

( )

2

2

1

1

A A Tx

Arad

A Txrad

P P

P e P

P e P

= − Γ

=

= − Γ
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Antenna Gain 
 
Recall that the directivity pattern of an antenna is: 
 

( ) ( )4
rad

U ,D ,
P

π θ φ
θ φ =  

 
The problem with this definition is in determining (measuring) 
the radiated power radP .  Recall that it was ideally found by 
integrating the antenna intensity pattern across all 
directions: 

( )
2

0 0
radP U , sin d d

π π

θ φ θ θ φ= ∫ ∫  

Yuck! 
 
A far easier measurement is determining the power delivered 
to the antenna ( AP ).  This is just a simple transmission line 
problem (i.e., no integration)! 
 

( )21A ATxP P= − Γ  

 
For perfectly efficient antenna, we know AradP P= , and so if 
(and only if)  the antenna is perfectly efficient: 
 

( ) ( )4 iff e=1
A

U ,D ,
P

π θ φ
θ φ =  
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But, for inefficient antenna ( )AradP P<  we find: 
 

( ) ( )4 for 1
A

U ,D , e
P

π θ φ
θ φ > <  

 
Specifically, since ( )AradP e P= , we find: 
 

( ) ( )

( ) ( )

( ) ( )

4

4

4

rad

A

A

U ,D ,
P
U ,D ,
e P
U ,e D ,
P

π θ φ
θ φ

π θ φ
θ φ

π θ φ
θ φ

=

=

=

 

Therefore, the function:   
 

( )4
A

U ,
P

π θ φ  

 
is one that combines the antenna directivity pattern ( )D ,θ φ  
and the antenna efficiency e. 
 

We might argue that this function is 
even more useful than the 
directivity pattern ( )D ,θ φ , as it 
would allow us to directly relate the 
power delivered to the antenna AP  to 
the intensity produced by the 
antenna—while taking into account 
its inefficiency (Ohmic losses)!   

( )4

A

U ,
P

!!!π θ φ  

( )D , !!!θ φ  
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As a result we give this important function a name—the gain 
pattern ( )G ,θ φ : 
 

 

( ) ( ) ( )4
A

U ,G , e D ,
P

π θ φ
θ φ θ φ= =  

 
 

Note then that the pattern ( )G ,θ φ  is essentially the same 
pattern  as ( )D ,θ φ  only its scaled by value e.   Or, in decibels 
we  find: 
 

( ) ( ) ( )1010G , dB D , dB log eθ φ θ φ= +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  
 

Recall that 1e < , so that the value ( )1010log e  will be negative. 
As a result, the gain pattern expressed in decibels will simply 
be that of the directivity pattern, only “shifted down” by a 
value ( )1010log e . 

 
Either way, we can conclude: 
 

( )
( )

( ) ( )G ,e e dB G , dB D , dB
D ,

θ φ
θ φ θ φ

θ φ
= = −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 

 
and likewise since 1e < , we see that the gain pattern will be 
less than the directivity pattern: 
 

( ) ( ) ( ) ( )G , D , G , dB D , dBθ φ θ φ θ φ θ φ< <⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ 
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Finally, we recall that the peak of the directivity pattern is a 
fundamental antenna parameter called Directivity 0D .  We can 
now define an equivalent parameter called Antenna Gain 0G , 
which is simply the Directivity modified by the efficiency e: 
 
 

0 0G e D=  
 
 
Note then that Gain 0G  is equal to the peak value of gain 
pattern ( )G ,θ φ . 
 
Q:  So if gain and gain pattern is a) easier to determine and 
b) more useful, why do we even bother with directivity and 
directivity pattern? 
 
A:  Recall there were some explicit mathematical and physical 
equalities that we derived for the directivity pattern, for 
example: 

( )
2

0 0

1 1 0
4

D , sin d d .
π π

θ φ θ θ φ
π

=∫ ∫  

 
This says that the average value of the directivity pattern 
must be precisely 1.0.  From this we were able to conclude the 
useful relationship: 

0 4AD πΩ =  
 
But for gain, we can only conclude: 
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( )
2

0 0

1 1 0
4

G , sin d d .
π π

θ φ θ θ φ
π

<∫ ∫  

 
from which we ascertain the less than helpful inequality: 
 

0 4AG πΩ <  
 

Thus, both gain and directivity are important and useful 
antenna parameters! 
 
Note however, that many (most) antennas are very efficient 
(e.g., 0 9e .> ).  As a result, we find that: 
 

( ) ( )0 0 and if 1G D G , D , eθ φ θ φ≈ ≈ ≈  
 

In other words, for highly efficient antennas, the gain and 
directivity are nearly the same, and terms gain and directivity 
are commonly used interchangeably. 

 
 
 
 




