Power Flow and Return Loss

We have discovered that two waves propagate along a transmission line, one in each direction \((V^+(z)\) and \(V^-(z)\)).

\[
I(z) = \frac{V_0^+}{Z_0} \left[e^{-j\beta \ell} - \Gamma_L e^{+j\beta \ell} \right]
\]

\[
V(z) = V_0^+ \left[e^{-j\beta \ell} + \Gamma_L e^{+j\beta \ell} \right]
\]

The result is that electromagnetic energy flows along the transmission line at a given rate (i.e., power).

Q: How much power flows along a transmission line, and where does that power go?

A: We can answer that question by determining the power absorbed by the load!
The time average power absorbed by an impedance Z_L is:

$$\rho_{abs} = \frac{1}{2} \text{Re}\{V_L I_L^*\}$$

$$= \frac{1}{2} \text{Re}\{V(z = 0) I(z = 0)^*\}$$

$$= \frac{1}{2} Z_0 \text{Re}\left\{(V_0^* \left[e^{-j\beta_0} + \Gamma_L e^{+j\beta_0} \right]) \left(V_0^* \left[e^{-j\beta_0} - \Gamma_L e^{+j\beta_0} \right]\right)^\ast\right\}$$

$$= \frac{|V_0|^2}{2 Z_0} \text{Re}\left\{1 - \left(\Gamma_L^* - \Gamma_L\right) - |\Gamma_L|^2\right\}$$

$$= \frac{|V_0|^2}{2 Z_0} \left(1 - |\Gamma_L|^2\right)$$

The significance of this result can be seen by rewriting the expression as:

$$\rho_{abs} = \frac{|V_0|^2}{2 Z_0} \left(1 - |\Gamma_L|^2\right)$$

$$= \frac{|V_0|^2}{2 Z_0} - \frac{|V_0^*\Gamma_L|^2}{2 Z_0}$$

$$= \frac{|V_0|^2}{2 Z_0} - \frac{|V_0|^2}{2 Z_0}$$

The two terms in above expression have a very definite physical meaning. The first term is the time-averaged power of the wave propagating along the transmission line toward the load.
We say that this wave is incident on the load:

\[P_{\text{inc}} = P_+ = \frac{|V_0^+|^2}{2Z_0} \]

Likewise, the second term of the \(P_{\text{abs}} \) equation describes the power of the wave moving in the other direction (away from the load). We refer to this as the wave reflected from the load:

\[P_{\text{ref}} = P_- = \frac{|V_0^-|^2}{2Z_0} = \frac{|\Gamma_L|^2|V_0^+|^2}{2Z_0} = |\Gamma_L|^2 P_{\text{inc}} \]

Thus, the power absorbed by the load is simply:

\[P_{\text{abs}} = P_{\text{inc}} - P_{\text{ref}} \]

or, rearranging, we find:

\[P_{\text{inc}} = P_{\text{abs}} + P_{\text{ref}} \]

This equation is simply an expression of the conservation of energy!

It says that power flowing toward the load (\(P_{\text{inc}} \)) is either absorbed by the load (\(P_{\text{abs}} \)) or reflected back from the load (\(P_{\text{ref}} \)).
Note that if $|\Gamma_L|^2 = 1$, then $P_{inc} = P_{ref}$, and therefore no power is absorbed by the load.

This of course makes sense!

The magnitude of the reflection coefficient ($|\Gamma_L|$) is equal to one only when the load impedance is purely reactive (i.e., purely imaginary).

Of course, a purely reactive element (e.g., capacitor or inductor) cannot absorb any power—all the power must be reflected!

Return Loss

The ratio of the reflected power to the incident power is known as return loss. Typically, return loss is expressed in dB:

$$R.L. = -10 \log_{10} \left[\frac{P_{ref}}{P_{inc}} \right] = -10 \log_{10} |\Gamma_L|^2$$
For example, if the return loss is 10dB, then 10% of the incident power is reflected at the load, with the remaining 90% being absorbed by the load—we “lose” 10% of the incident power.

Likewise, if the return loss is 30dB, then 0.1% of the incident power is reflected at the load, with the remaining 99.9% being absorbed by the load—we “lose” 0.1% of the incident power.

Thus, a larger numeric value for return loss actually indicates less lost power! An ideal return loss would be ∞ dB, whereas a return loss of 0 dB indicates that $|\Gamma_L| = 1$--the load is reactive!