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The Complex Propagation 
Constant γ 

 
Recall that the current and voltage along a transmission line 
have the form: 
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where Z0 and γ are complex constants that describe the 
properties of a transmission line.  Since γ is complex, we can 
consider both its real and imaginary components. 
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where { } { } and Re Imα βγ γ= = .  Therefore, we can write: 
 

z j z z jBze e e e− − + − −= =( )γ α β α  
 

Since j ze − β =1, then ze −α alone determines the magnitude of 
ze −γ .   



1/20/2005 The Complex Propagation Constant.doc 2/4 

Jim Stiles The Univ. of Kansas Dept. of EECS 

I.E., z ze e− −=γ α . 
 
 
 
 
 
 

 
 
 
 
 
 
Therefore, α expresses the attenuation of the signal due to the 
loss in the transmission line. 
 
Since ze −α  is a real function, it expresses the magnitude of 

ze −γ only.  The relative phase ( )zφ  of ze −γ is therefore 
determined by ( )j z j ze eβ φ− −=  only (recall 1j ze − =β ).   
 
From Euler’s equation: 
 

j z j ze e z j zφ β β β= = +( ) cos( ) sin( )  
 

Therefore, βz represents the relative phase ( )zφ of the 
oscillating signal, as a function of transmission line position z.  
Since phase ( )zφ is expressed in radians, and z is distance (in 
meters), the value β must have units of : 
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The wavelength λ  of the signal is the distance 2z π∆  over which 
the relative phase changes by 2π  radians. So: 
 

2 22 ( )- ( ) = =z z z zπ ππ φ φ β β λ= + ∆ ∆  
 
or,  rearranging: 
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Since the signal is oscillating in time at rate   rad secω , the 
propagation velocity of the wave is:  
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where f is frequency in cycles/sec. 
 
Recall we originally considered the transmission line current and 
voltage as a function of time and position 
(i.e., ( ) and ( )v z t i z t, , ).  We assumed the time function was 
sinusoidal, oscillating with frequency ω : 
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Now that we know V(z) and I(z), we can write the original 
functions as: 
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The first term in each equation describes a wave propagating in 
the +z direction, while the second describes a wave propagating 
in the opposite (-z) direction. 
 
 
 
 
 
 
 
Each wave has wavelength: 
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And velocity: 
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