II Transmitter and Receiver Design

We design radio systems using RF/microwave components.
Q: Why don't we use the "usual" circuit components (e.g., resistors, capacitors, op-amps, transistors) ??

A: We do use these! But we require new devices because:
A. Microwave Components

Let's carefully examine each of the microwave devices that are useful for radio design:
1)
2)
3)
4)
5)
6)
7)
8)

1. Transmission Lines

Q: So just what is a transmission line?

A:

\rightarrow

Q: Oh, so it's simply a conducting wire, right?

A:

HO: The Telegraphers Equations

HO: Time-Harmonic Solutions for Linear Circuits
a) Basic Transmission Line Theory

Q: So, what complex functions $I(z)$ and $V(z)$ do satisfy both telegrapher equations?

A:

HO: The Transmission Line Wave Equations

Q: Are the solutions for $I(z)$ and $V(z)$ completely independent, or are they related in any way?

A:

HO: The Transmission Line Characteristic Impedance
Q: So what is the significance of the constant β ? What does it tell us?

A:

HO: The Propagation Constant
Q: Is characteristic impedance Z_{0} the same as the concept of impedance I learned about in circuits class?

A:

HO: Line Impedance
Q: These wave functions $V^{+}(z)$ and $V^{-}(z)$ seem to be important. How are they related?

A:

HO: The Reflection Coefficient

HO: V, I, Z or $V^{*}, V, Г ? ?$

b) The Terminated, Lossless Transmission Line

We now know that a lossless transmission line is completely characterized by real constants Z_{0} and β.

Likewise, the 2 waves propagating on a transmission line are completely characterized by complex constants V_{0}^{+}and V_{0}^{-}.

Q: Z_{0} and β are determined from L, C, and ω. How do we find V_{0}^{+}and V_{0}^{-}?

A:

Every transmission line has 2 "boundaries"
1)
2)

Typically, there is a source at one end of the line, and a load at the other.
\rightarrow

Let's apply the load boundary condition!

HO: The Terminated, Lossless Transmission Line

HO: Special Values of Load Impedance

Q: So what is the significance of the constant β ? What does it tell us?

A:

HO: The Propagation Constant
Q: So the line impedance at the end of a line must be load impedance Z_{L} (i.e., $Z\left(z=z_{L}\right)=Z_{L}$); what is the line impedance at the beginning of the line (i.e.,
$\left.Z\left(z=z_{L}-\ell\right)=?\right)$?

A:

HO: Transmission Line Input Impedance
Q: You said the purpose of the transmission line is to transfer E.M. energy from the source to the load. Exactly how much power is flowing in the transmission line, and how much is delivered to the load?

A: HO: Power Flow and Return Loss

Note that we can specify a load with:
1)
2)
3)

A fourth alternative is VSWR.

HO: VSWR

c) A second boundary condition: Applying a generator to the transmission line

Q: A passive load Z_{L} specifies $Z(z)$ and $\Gamma(z)$, but we still don't explicitly know $V(z), I(z), V(z)$, or $V(z)$. How are these functions determined?

A:

HO: A Transmission Line Connecting Source and Load
Q: OK, we can finally ask the question that we have been concerned with since the very beginning: How much power is delivered to the load by the source?

A: HO: Delivered Power

Q: So the power transferred depends on the source, the transmission line, and the load. What combination of these devices will result in maximum power transfer?

A: HO: Special Cases of Source and Input Impedances

Q: Yikes! The signal source is generally a Thevenin's equivalent of the output of some useful device, while the load impedance is generally the input impedance of some other useful device. I do not want to-nor typically can I-change these devices or alter their characteristics.

Must I then just accept the fact that I will achieve suboptimum power transfer?

A:

HO: Matching Networks

Q: But in microwave circuits, a source and load are connected by a transmission line. Can we implement matching networks in transmission line circuits?

A: HO: Matching Networks and Transmission Lines

Q: Matching networks seem almost too good to be true; can we really design and construct them to provide a perfect match?

A: It is relatively easy to provide a near perfect match at precisely one frequency!

But, since lossless matching networks are made entirely of reactive elements (not to mention the reactive components of the source and load impedance), we find that changing the signal frequency will typically "mismatch" our circuit!

Thus a difficult challenge for any microwave component designer is to provide a wideband match to a transmission line with characteristic impedance Z_{0}.
\rightarrow

d) Scattering Parameters

Note that a passive load is a one-port device-a device that can be characterized (at one frequency) by impedance Z_{L} or load reflection coefficient Γ_{L}.

However, many microwave devices have multiple ports!
Most common are two-port devices (e.g., amplifiers and filters), devices with both a gozenta and a gozouta.

Note that a transmission line is also two-port device!

Q: Are there any known ways to characterize a multi-port device?

A: Yes! Two methods are:
1.
2.

HO: The Impedance Matrix

Q: You say that the impedance matrix characterizes a multiport device. But is this characterization helpful? Can we actually use it to solve real problems?

A: Example: Using the Impedance Matrix
Q: The impedance matrix relates the quantities $V(z)$ and $I(z)$, is there an equivalent matrix that relates $V^{\prime}(z)$ and $V(z)$?

A:

HO: The Scattering Matrix

Q: Can the scattering matrix likewise be used to solve real problems?

A: Of course!

Example: The Scattering Matrix

Example: Scattering Parameters

Q: But, can the scattering matrix by itself tell us anything about the device it characterizes?

A: Yes! It can tell us if the device is matched, or lossless, or reciprocal.

HO: Matched, Lossless, Reciprocal

e) Types of Transmission Lines

Perhaps the most common transmission line structure is coaxial transmission line.

HO:Coaxial Transmission Lines

Coaxial transmission lines are used with connectorized devices.

HO: Coax Connectors

We can also construct transmission lines on printed circuit boards.

HO: Printed Circuit Board Transmission Lines

The Telegrapher Equations

Consider a section of "wire":

$\longleftarrow \quad \Delta \mathbf{z} \longrightarrow$

Q: Huh ?! Current i and voltage v are a function of position z ?? Shouldn't $i(\boldsymbol{z}, t)=i(\boldsymbol{z}+\Delta \boldsymbol{z}, t)$ and $v(\boldsymbol{z}, t)=v(\boldsymbol{z}+\Delta \boldsymbol{z}, t)$?

A: NO! Because a wire is never a perfect conductor.
A "wire" will have:

1) Inductance
2) Resistance
3) Capacitance
4) Conductance
i.e.,

Where:
$R=$ resistance/unit length
L = inductance/unit length
$C=$ capacitance/unit length
$G=$ conductance/unit length
$\therefore \quad$ resistance of wire length Δz is $\mathrm{R} \Delta z$.

Using KVL, we find:

$$
v(z+\Delta z, t)-v(z, t)=-R \Delta z i(z, t)-L \Delta z \frac{\partial i(z, t)}{\partial t}
$$

and from KCL:

$$
i(z+\Delta z, t)-i(z, t)=-G \Delta z v(z, t)-C \Delta z \frac{\partial v(z, t)}{\partial t}
$$

Dividing the first equation by Δz, and then taking the limit as $\Delta z \rightarrow 0$:

$$
\lim _{\Delta z \rightarrow 0} \frac{v(z+\Delta z, t)-v(z, t)}{\Delta z}=-R i(z, t)-L \frac{\partial i(z, t)}{\partial t}
$$

which, by definition of the derivative, becomes:

$$
\frac{\partial v(z, t)}{\partial z}=-R i(z, t)-L \frac{\partial i(z, t)}{\partial t}
$$

Similarly, the KCL equation becomes:

$$
\frac{\partial i(z, t)}{\partial z}=-G v(z, t)-C \frac{\partial v(z, t)}{\partial t}
$$

These equations are known as the telegrapher's equations !

$$
\begin{aligned}
& \frac{\partial v(z, t)}{\partial z}=-R i(z, t)-L \frac{\partial i(z, t)}{\partial t} \\
& \frac{\partial i(z, t)}{\partial z}=-G v(z, t)-C \frac{\partial v(z, t)}{\partial t}
\end{aligned}
$$

Time-Harmonic Solutions

for Linear Circuits

There are an unaccountably infinite number of solutions $v(z, t)$ and $i(z, t)$ for the telegrapher's equations! However, we can simplify the problem by assuming that the function of time is time harmonic (i.e., sinusoidal), oscillating at some radial frequency ω (e.g., cos ωt).

Q: Why on earth would we assume a sinusoidal function of time? Why not a square wave, or triangle wave, or a "sawtooth" function?

A: We assume sinusoids because they have a very special property!

Sinusoidal time functions-and only a sinusoidal time functions-are the eigen functions of linear, time-invariant systems.

Q: ???
A: If a sinusoidal voltage source with frequency ω is used to excite a linear, time-invariant circuit (and a transmission line is both linear and time invariant!), then the voltage at each and every point with the circuit will likewise vary sinusoidally-at the same frequency ω !

Q: So what? Isn't that obvious?

A: Not at all! If you were to excite a linear circuit with a square wave, or triangle wave, or sawtooth, you would find that-generally speaking-nowhere else in the circuit is the voltage a perfect square wave, triangle wave, or sawtooth. The linear circuit will effectively distort the input signal into something else!

Q: Into what function will the input signal be distorted?
A: It depends-both on the original form of the input signal, and the parameters of the linear circuit. At different points within the circuit we will discover different functions of time-unless, of course, we use a sinusoidal input. Again, for a sinusoidal excitation, we find at every point within circuit an undistorted sinusoidal function!

Q: So, the sinusoidal function at every point in the circuit is exactly the same as the input sinusoid?

A: Not quite exactly the same. Although at every point within the circuit the voltage will be precisely sinusoidal (with frequency ω), the magnitude and relative phase of the sinusoid will generally be different at each and every point within the circuit.

Thus, the voltage along a transmission line-when excited by a sinusoidal source-must have the form:

$$
v(z, t)=v(z) \cos (\omega t+\varphi(z))
$$

Thus, at some arbitrary location z along the transmission line, we must find a time-harmonic oscillation of magnitude $v(z)$ and relative phase $\varphi(z)$.

Now, consider Euler's equation, which states:

$$
e^{j \psi}=\cos \psi+j \sin \psi
$$

Thus, it is apparent that:

$$
\operatorname{Re}\left\{e^{j \psi}\right\}=\cos \psi
$$

and so we conclude that the voltage on a transmission line can be expressed as:

$$
\begin{aligned}
v(z, t) & =v(z) \cos (\omega t+\varphi(z)) \\
& =\operatorname{Re}\left\{v(z) e^{j(\omega t+\varphi(z))}\right\} \\
& =\operatorname{Re}\left\{v(z) e^{+j \varphi(z)} e^{j \omega t}\right\}
\end{aligned}
$$

Thus, we can specify the time-harmonic voltage at each an every location z along a transmission line with the complex function $V(z)$:

$$
V(z)=v(z) e^{-j \varphi(z)}
$$

where the magnitude of the complex function is the magnitude of the sinusoid:

$$
v(z)=|V(z)|
$$

and the phase of the complex function is the relative phase of the sinusoid:

$$
\varphi(z)=\arg \{V(z)\}
$$

Q: Hey wait a minute! What happened to the time-harmonic function $e^{j \omega t}$??

A: There really is no reason to explicitly write the complex function $e^{j \omega t}$, since we know in fact (being the eigen function of linear systems and all) that if this is the time function at any one location (such as qt the excitation source) then this must be time function at all transmission line locations z !

The only unknown is the complex function $V(z)$. Once we determine $V(z)$, we can always (if we so desire) "recover" the real function $v(z, t)$ as:

$$
v(z, t)=\operatorname{Re}\left\{V(z) e^{j \omega t}\right\}
$$

Thus, if we assume a time-harmonic source, finding the transmission line solution $v(z, t)$ reduces to solving for the complex function $V(z)$.

The Transmission Line

Wave Equation

Let's assume that $v(z, t)$ and $i(z, t)$ each have the timeharmonic form:

$$
v(z, t)=\operatorname{Re}\left\{V(z) e^{j \omega t}\right\} \quad \text { and } \quad i(z, t)=\operatorname{Re}\left\{I(z) e^{j \omega t}\right\}
$$

The time-derivative of these functions are:

$$
\begin{aligned}
& \frac{\partial v(z, t)}{\partial t}=\operatorname{Re}\left\{V(z) \frac{\partial e^{j \omega t}}{\partial t}\right\}=\operatorname{Re}\left\{j \omega V(z) e^{j \omega t}\right\} \\
& \frac{\partial i(z, t)}{\partial t}=\operatorname{Re}\left\{I(\boldsymbol{z}) \frac{\partial e^{j \omega t}}{\partial t}\right\}=\operatorname{Re}\left\{j \omega I(z) e^{j \omega t}\right\}
\end{aligned}
$$

The telegrapher's equations thus become:

$$
\begin{aligned}
& \operatorname{Re}\left\{\frac{\partial V(z)}{\partial z} e^{j \omega t}\right\}=\operatorname{Re}\left\{-(R+j \omega L) I(z) e^{j \omega t}\right\} \\
& \operatorname{Re}\left\{\frac{\partial I(z)}{\partial z} e^{j \omega t}\right\}=\operatorname{Re}\left\{-(G+j \omega C) V(z) e^{j \omega t}\right\}
\end{aligned}
$$

And then simplifying, we have the complex form of telegrapher's equations:

$$
\begin{aligned}
& \frac{\partial V(z)}{\partial z}=-(R+j \omega L) I(z) \\
& \frac{\partial I(z)}{\partial z}=-(G+j \omega C) V(z)
\end{aligned}
$$

Note that these complex differential equations are not a function of time t !

* The functions $I(z)$ and $V(z)$ are complex, where the magnitude and phase of the complex functions describe the magnitude and phase of the sinusoidal time function $e^{j \omega t}$.
* Thus, $I(z)$ and $V(z)$ describe the current and voltage along the transmission line, as a function as position z.
* Remember, not just any function $I(z)$ and $V(z)$ can exist on a transmission line, but rather only those functions that satisfy the telegraphers equations.

Our task, therefore, is to solve the telegrapher equations and find all solutions $I(z)$ and $V(z)$!

Q: So, what functions $I(z)$ and $V(z)$ do satisfy both telegrapher's equations??

A: To make this easier, we will combine the telegrapher equations to form one differential equation for $\boldsymbol{V}(z)$ and another for $I(z)$.

First, take the derivative with respect to z of the first telegrapher equation:

$$
\begin{aligned}
& \frac{\partial}{\partial \boldsymbol{z}}\left\{\frac{\partial V(\boldsymbol{z})}{\partial \boldsymbol{z}}=-(R+j \omega L) I(\boldsymbol{z})\right\} \\
& =\frac{\partial^{2} V(\boldsymbol{z})}{\partial \boldsymbol{z}^{2}}=-(R+j \omega L) \frac{\partial I(\boldsymbol{z})}{\partial \boldsymbol{z}}
\end{aligned}
$$

Note that the second telegrapher equation expresses the derivative of $I(z)$ in terms of $K(z)$:

$$
\frac{\partial I(z)}{\partial z}=-(G+j \omega C) V(z)
$$

Combining these two equations, we get an equation involving $V(z)$ only:

$$
\frac{\partial^{2} V(\boldsymbol{z})}{\partial \boldsymbol{z}^{2}}=(R+j \omega L)(G+j \omega C) V(\boldsymbol{z})
$$

Now, we find at high frequencies that:

$$
R \ll j \omega L \text { and } \quad G \ll j \omega C
$$

and so we can approximate the differential equation as:

$$
\frac{\partial^{2} V(\boldsymbol{z})}{\partial z^{2}}=(j \omega L)(j \omega C) V(z)=\omega^{2} L C V(z)=\beta^{2} V(z)
$$

where it is apparent that:

$$
\beta^{2} \doteq \omega^{2} L C
$$

In a similar manner (i.e., begin by taking the derivative of the second telegrapher equation), we can derive the differential equation:

$$
\frac{\partial^{2} I(z)}{\partial z}=\beta^{2} I(z)
$$

We have decoupled the telegrapher's equations, such that we now have two equations involving one function only:

$$
\begin{aligned}
& \frac{\partial^{2} V(z)}{\partial z}=\beta^{2} V(z) \\
& \frac{\partial^{2} I(z)}{\partial z}=\beta^{2} I(z)
\end{aligned}
$$

These are known as the transmission line wave equations.

Note only special functions satisfy these equations: if we take the double derivative of the function, the result is the original function (to within a constant)!

For example, the functions $V(z)=e^{-j \beta z}$ and $V(z)=e^{+j \beta z}$ each satisfy this transmission line wave equation (insert these into the differential equation and see for yourself!).

Likewise, since the transmission line wave equation is a linear differential equation, a weighted superposition of the two solutions is also a solution (again, insert this solution to and see for yourself!):

$$
V(z)=V_{0}^{+} e^{-j \beta z}+V_{0}^{-} e^{+j \beta z}
$$

In fact, it turns out that any and all possible solutions to the differential equations can be expressed in this simple form!

Therefore, the general solution to these wave equations (and thus the telegrapher equations) are:

$$
\begin{aligned}
& V(z)=V_{0}^{+} e^{-j \beta z}+V_{0}^{-} e^{+j \beta z} \\
& I(z)=I_{0}^{+} e^{-j \beta z}+I_{0}^{-} e^{+j \beta z}
\end{aligned}
$$

where $V_{0}^{+}, V_{0}^{-}, I_{0}^{+}$, and I_{0}^{-}are complex constants.
\rightarrow It is unfathomably important that you understand what this result means!

It means that the functions $V(z)$ and $I(z)$, describing the current and voltage at all points z along a transmission line, can always be completely specified with just four complex constants $\left(V_{0}^{+}, V_{0}^{-}, I_{0}^{+}, I_{0}^{-}\right)!!$

We can alternatively write these solutions as:

$$
\begin{aligned}
& V(z)=V^{+}(z)+V^{-}(z) \\
& I(z)=I^{+}(z)+I^{-}(z)
\end{aligned}
$$

where:

$$
\begin{array}{ll}
V^{+}(z) \doteq V_{0}^{+} e^{-j \beta z} & V^{-}(z) \doteq V_{0}^{-} e^{+j \beta z} \\
I^{+}(z) \doteq I_{0}^{+} e^{-j \beta z} & I^{-}(z) \doteq I_{0}^{-} e^{+j \beta z}
\end{array}
$$

The two terms in each solution describe two waves propagating in the transmission line, one wave $\left(V^{+}(z)\right.$ or $\left.I^{+}(z)\right)$ propagating in one direction $(+z)$ and the other wave $\left(V^{-}(z)\right.$ or $\left.I^{-}(z)\right)$ propagating in the opposite direction $(-z)$.

Q: So just what are the complex values $V_{0}^{+}, V_{0}^{-}, I_{0}^{+}, I_{0}^{-}$?

A: Consider the wave solutions at one specific point on the transmission line-the point $z=0$. For example, we find that:

$$
\begin{aligned}
V^{+}(z=0) & =V_{0}^{+} e^{-j \beta(z=0)} \\
& =V_{0}^{+} e^{-(0)} \\
& =V_{0}^{+}(1) \\
& =V_{0}^{+}
\end{aligned}
$$

In other words, V_{0}^{+}is simply the complex value of the wave function $V^{+}(z)$ at the point $z=0$ on the transmission line!

Likewise, we find:

$$
\begin{aligned}
& V_{0}^{-}=V^{-}(z=0) \\
& I_{0}^{+}=I^{+}(z=0) \\
& I_{0}^{-}=I^{-}(z=0)
\end{aligned}
$$

Again, the four complex values $V_{0}^{+}, I_{0}^{+}, V_{0}^{-}, I_{0}^{-}$are all that is needed to determine the voltage and current at any and all points on the transmission line.

More specifically, each of these four complex constants completely specifies one of the four transmission line wave functions $V^{+}(z), I^{+}(z), V^{-}(z), I^{-}(z)$.

Q: But what determines these wave functions? How do we find the values of constants $V_{0}^{+}, I_{0}^{+}, V_{0}^{-}, I_{0}^{-}$?

A: As you might expect, the voltage and current on a transmission line is determined by the devices attached to it on either end (e.g., active sources and/or passive loads)!

The precise values of $V_{0}^{+}, I_{0}^{+}, V_{0}^{-}, I_{0}^{-}$are therefore determined by satisfying the boundary conditions applied at each end of the transmission line-much more on this later!

The Characteristic Impedance of a Transmission Line

So, from the telegrapher's differential equations, we know that the complex current $I(z)$ and voltage $V(z)$ must have the form:

$$
\begin{aligned}
& V(z)=V_{0}^{+} e^{-j \beta z}+V_{0}^{-} e^{+j \beta z} \\
& I(z)=I_{0}^{+} e^{-j \beta z}+I_{0}^{-} e^{+j \beta z}
\end{aligned}
$$

Let's insert the expression for $V(z)$ into the first telegrapher's equation, and see what happens!

$$
\frac{d V(z)}{d z}=-j \beta V_{0}^{+} e^{-j \beta z}+j \beta V_{0}^{-} e^{+j \beta z}=-j \omega L I(z)
$$

Therefore, rearranging, $I(z)$ must be:

$$
I(z)=\frac{\beta}{\omega L}\left(V_{0}^{+} e^{-j \beta z}-V_{0}^{-} e^{+j \beta z}\right)
$$

Q: But wait! I thought we already knew current I(z). Isn't it:

$$
I(z)=I_{0}^{+} e^{-j \beta z}+I_{0}^{-} e^{+j \beta z} ? ?
$$

How can both expressions for $I(z)$ be true??

A: Easy! Both expressions for current are equal to each other.

$$
I(z)=I_{0}^{+} e^{-j \beta z}+I_{0}^{-} e^{+j \beta z}=\frac{\beta}{\omega L}\left(V_{0}^{+} e^{-j \beta z}-V_{0}^{-} e^{+j \beta z}\right)
$$

For the above equation to be true for all \boldsymbol{z}, I_{0} and V_{0} must be related as:

$$
I_{0}^{+} e^{-\gamma z}=\left(\frac{\beta}{\omega L}\right) V_{0}^{+} e^{-\gamma z} \quad \text { and } \quad I_{0}^{-} e^{+\gamma z}=\left(\frac{-\beta}{\omega L}\right) V_{0}^{-} e^{+\gamma z}
$$

Or-recalling that $V_{0}^{+} e^{-j \beta z}=V^{+}(z)$ (etc.)-we can express this in terms of the two propagating waves:

$$
I^{+}(z)=\left(\frac{\beta}{\omega L}\right) V^{+}(z) \quad \text { and } \quad I^{-}(z)=\left(\frac{-\beta}{\omega L}\right) V^{-}(z)
$$

Now, we note that since:

$$
\beta=\omega \sqrt{L C}
$$

We find that:

$$
\frac{\beta}{\omega L}=\frac{\omega \sqrt{L C}}{\omega L}=\sqrt{\frac{C}{L}}
$$

Thus, we come to the startling conclusion that:

$$
\frac{V^{+}(z)}{I^{+}(z)}=\sqrt{\frac{L}{C}} \quad \text { and } \quad \frac{V^{-}(z)}{I^{-}(z)}=\sqrt{\frac{L}{C}}
$$

Q: What's so startling about this conclusion?

A: Note that although the magnitude and phase of each propagating wave is a function of transmission line position \boldsymbol{z} (e.g., $V^{+}(z)$ and $I^{+}(z)$), the ratio of the voltage and current of each wave is independent of position-a constant with respect to position z !

Although $V_{0}^{ \pm}$and $I_{0}^{ \pm}$are determined by boundary conditions (i.e., what's connected to either end of the transmission line), the ratio $V_{0}^{ \pm} / I_{0}^{ \pm}$is determined by the parameters of the transmission line only (R, L, G, C).
\rightarrow This ratio is an important characteristic of a transmission line, called its Characteristic Impedance Z_{0}.

$$
Z_{0} \doteq \frac{V_{0}^{+}}{I_{0}^{+}}=\frac{-V_{0}^{-}}{I_{0}^{-}}=\sqrt{\frac{L}{C}}
$$

We can therefore describe the current and voltage along a transmission line as:

$$
\begin{aligned}
& V(z)=V_{0}^{+} e^{-j \beta z}+V_{0}^{-} e^{+j \beta z} \\
& I(z)=\frac{V_{0}^{+}}{Z_{0}} e^{-j \beta z}-\frac{V_{0}^{-}}{Z_{0}} e^{+j \beta z}
\end{aligned}
$$

or equivalently:

$$
\begin{aligned}
& V(z)=Z_{0} I_{0}^{+} e^{-j \beta z}-Z_{0} I_{0}^{-} e^{+j \beta z} \\
& I(z)=I_{0}^{+} e^{-j \beta z}+I_{0}^{-} e^{+j \beta z}
\end{aligned}
$$

Note that instead of characterizing a transmission line with real parameters L and C, we can (and typically do!) describe a lossless transmission line using real parameters Z_{0} and β.

Line Impedance

Now let's define line impedance $Z(z)$, a complex function which is simply the ratio of the complex line voltage and complex line current:

$$
Z(z)=\frac{V(z)}{I(z)}
$$

Q: Hey! I know what this is! The ratio of the voltage to current is simply the characteristic impedance Z_{0}, right ???

A: NO! The line impedance $Z(z)$ is (generally speaking) NOT the transmission line characteristic impedance Z_{0} !!!
\rightarrow It is unfathomably important that you understand this!!!!

To see why, recall that:

$$
V(z)=V^{+}(z)+V^{-}(z)
$$

And that:

$$
I(z)=\frac{V^{+}(z)-V^{-}(z)}{Z_{0}}
$$

Therefore:

$$
Z(z)=\frac{V(z)}{I(z)}=Z_{0}\left(\frac{\boldsymbol{V}^{+}(\boldsymbol{z})+\boldsymbol{V}^{-}(\boldsymbol{z})}{V^{+}(\boldsymbol{z})-V^{-}(\boldsymbol{z})}\right) \neq Z_{0}
$$

Or, more specifically, we can write:

$$
Z(z)=Z_{0}\left(\frac{V_{0}^{+} e^{-j \beta z}+V_{0}^{-} e^{+j \beta z}}{V_{0}^{+} e^{-j \beta z}-V_{0}^{-} e^{+j \beta z}}\right)
$$

Q: I'm confused! Isn't:

$$
V^{+}(z) / I^{+}(z)=Z_{0} ? ? ?
$$

A: Yes! That is true! The ratio of the voltage to current for each of the two propagating waves is $\pm Z_{0}$. However, the ratio of the sum of the two voltages to the sum of the two currents is not equal to Z_{0} (generally speaking)!

This is actually confirmed by the equation above. Say that $V^{-}(z)=0$, so that only one wave $\left(V^{+}(z)\right)$ is propagating on the line.

In this case, the ratio of the total voltage to the total current is simply the ratio of the voltage and current of the one remaining wave-the characteristic impedance Z_{0} !
$Z(z)=\frac{V(z)}{I(z)}=Z_{0}\left(\frac{V^{+}(z)}{V^{+}(z)}\right)=\frac{V^{+}(z)}{I^{+}(z)}=Z_{0} \quad\left(\right.$ when $\left.V^{-}(z)=0\right)$

Q: So, it appears to me that characteristic impedance Z_{0} is a transmission line parameter, depending only on the transmission line values L and C.

Whereas line impedance is $Z(z)$ depends the magnitude and phase of the two propagating waves $V^{+}(z)$ and $V^{-}(z)$--values that depend not only on the transmission line, but also on the two things attached to either end of the transmission line!

Right!?

A: Exactly! Moreover, note that characteristic impedance Z_{0} is simply a number, whereas line impedance $Z(z)$ is a function of position (z) on the transmission line.

The Reflection Coefficient

So, we know that the transmission line voltage $V(z)$ and the transmission line current $I(z)$ can be related by the line impedance $Z(z)$:

$$
V(z)=Z(z) I(z)
$$

or equivalently:

$$
I(z)=\frac{V(z)}{Z(z)}
$$

Q: Piece of cake! I fully understand the concepts of voltage, current and impedance from my circuits classes. Let's move on to something more important (or, at the very least, more interesting).

Expressing the "activity" on a transmission line in terms of voltage, current and impedance is of course perfectly valid.

However, let us look closer at the expression for each of these quantities:

$$
\begin{gathered}
V(z)=V^{+}(z)+V^{-}(z) \\
I(z)=\frac{V^{+}(z)-V^{-}(z)}{Z_{0}} \\
Z(z)=Z_{0}\left(\frac{V^{+}(z)+V^{-}(z)}{V^{+}(z)-V^{-}(z)}\right)
\end{gathered}
$$

It is evident that we can alternatively express all "activity" on the transmission line in terms of the two transmission line waves $V^{+}(z)$ and $V^{-}(z)$.

$$
V^{-}(z)=V_{0}^{-} e^{+j \beta z}
$$

$$
\begin{aligned}
& + \\
& V^{+}(z)=V_{0}^{+} e^{-j \beta z}
\end{aligned}
$$

A: Similar to line impedance, we can define a new parameterthe reflection coefficient $\Gamma(z)$-as the ratio of the two quantities:

$$
\Gamma(z) \doteq \frac{V^{-}(z)}{V^{+}(z)} \Rightarrow \quad V^{-}(z)=\Gamma(z) V^{+}(z)
$$

More specifically, we can express $\Gamma(z)$ as:

$$
\Gamma(z)=\frac{V_{0}^{-} e^{+j \beta z}}{V_{0}^{+} e^{-j \beta z}}=\frac{V_{0}^{-}}{V_{0}^{+}} e^{+j 2 \beta z}
$$

Note then, the value of the reflection coefficient at $z=0$ is:

$$
\Gamma(z=0)=\frac{V^{-}(z=0)}{V_{0}^{+}(z=0)} e^{+j 2 \beta(0)}=\frac{V_{0}^{-}}{V_{0}^{+}}
$$

We define this value as Γ_{0}, where:

$$
\Gamma_{0} \doteq \Gamma(z=0)=\frac{V_{0}^{-}}{V_{0}^{+}}
$$

Note then that we can alternatively write $\Gamma(z)$ as:

$$
\Gamma(z)=\Gamma_{0} e^{+j 2 \beta z}
$$

So now we have two different but equivalent ways to describe transmission line activity!

We can use (total) voltage and current, related by line impedance:

$$
Z(z)=\frac{V(z)}{I(z)} \quad \therefore \quad V(z)=Z(z) I(z)
$$

Or, we can use the two propagating voltage waves, related by the reflection coefficient:

$$
\Gamma(z)=\frac{\boldsymbol{V}^{-}(\boldsymbol{z})}{\boldsymbol{V}^{+}(\boldsymbol{z})} \quad \therefore \quad \boldsymbol{V}^{-}(\boldsymbol{z})=\Gamma(\boldsymbol{z}) \boldsymbol{V}^{+}(\boldsymbol{z})
$$

These are equivalent relationships-we can use either when describing a transmission line.

$\mathrm{V}, \mathrm{I}, \mathrm{Z}$ or $\mathrm{V}^{+}, \mathrm{V}^{-}, \Gamma$?

Q: How do I choose which relationship to use when describinglanalyzing transmission line activity? What if I make the wrong choice? How will I know if my analysis is correct?

A: Remember, the two relationships are equivalent. There is no explicitly wrong or right choice-both will provide you with precisely the same correct answer!

For example, we know that the total voltage and current can be determined from knowledge wave representation:

$$
\begin{aligned}
V(z) & =V^{+}(z)+V^{+}(z) \\
& =V^{+}(z)(1+\Gamma(z)) \\
I(z) & =\frac{V^{+}(z)-V^{+}(z)}{Z_{0}} \\
& =\frac{V^{+}(z)(1-\Gamma(z))}{Z_{0}}
\end{aligned}
$$

Or explicitly using the wave solutions $V^{+}(z)=V_{0}^{+} e^{-j \beta z}$ and $V^{-}(z)=V_{0}^{-} e^{+j \beta z}$:

$$
\begin{aligned}
V(z) & =V_{0}^{+} e^{-j \beta z}+V_{0}^{-} e^{+j \beta z} \\
& =V_{0}^{+}\left(e^{-j \beta z}+\Gamma_{0} e^{+j \beta z}\right) \\
I(z) & =\frac{V_{0}^{+} e^{-j \beta z}-V_{0}^{-} e^{+j \beta z}}{Z_{0}} \\
& =\frac{V_{0}^{+}\left(e^{-j \beta z}-\Gamma_{0} e^{+j \beta z}\right)}{Z_{0}}
\end{aligned}
$$

More importantly, we find that line impedance $Z(z)=V(z) / I(z)$ can be expressed as:

$$
\begin{aligned}
Z(z) & =Z_{0} \frac{V^{+}(z)+V^{+}(z)}{V^{+}(z)-V^{+}(z)} \\
& =Z_{0}\left(\frac{1+\Gamma(z)}{1-\Gamma(z)}\right)
\end{aligned}
$$

Look what happened-the line impedance can be completely and unambiguously expressed in terms of reflection coefficient $\Gamma(z)$!

More explicitly:

$$
\begin{aligned}
Z(z) & =Z_{0} \frac{V_{0}^{+} e^{-j \beta z}+V_{0}^{-} e^{+j \beta z}}{V_{0}^{+} e^{-j \beta z}-V_{0}^{-} e^{+j \beta z}} \\
& =Z_{0} \frac{1+\Gamma_{0} e^{+j 2 \beta z}}{1-\Gamma_{0} e^{+j 2 \beta z}}
\end{aligned}
$$

With a little algebra, we find likewise that the wave functions can be determined from $V(z), I(z)$ and $Z(z)$:

$$
\begin{aligned}
V^{+}(z) & =\frac{V(z)+I(z) Z_{0}}{2} \\
& =\frac{V(z)}{Z(z)}\left(\frac{Z(z)+Z_{0}}{2}\right) \\
V^{-}(z) & =\frac{V(z)-I(z) Z_{0}}{2} \\
& =\frac{V(z)}{Z(z)}\left(\frac{Z(z)-Z_{0}}{2}\right)
\end{aligned}
$$

From this result we easily find that the reflection coefficient $\Gamma(z)$ can likewise be written directly in terms of line impedance:

$$
\Gamma(z)=\frac{Z(z)-Z_{0}}{Z(z)+Z_{0}}
$$

Thus, the values $\Gamma(z)$ and $Z(z)$ are equivalent parametersif we know one, then we can directly determine the other!

Q: So, if they are equivalent, why wouldn't I always use the current, voltage, line impedance representation? After all, I am more familiar and more confident those quantities. The wave representation sort of scares me!

A: Perhaps I can convince you of the value of the wave representation.

Remember, the time-harmonic solution to the telegraphers equation simply boils down to two complex constants- V_{0}^{+}and V_{0}^{-}. Once these complex values have been determined, we can describe completely the activity all points along our transmission line.

For the wave representation we find:

$$
\begin{aligned}
& V^{+}(z)=V_{0}^{+} e^{-j \beta z} \\
& V^{-}(z)=V_{0}^{+} e^{+j \beta z} \\
& \Gamma(z)=\frac{V_{0}^{-}}{V_{0}^{+}} e^{+j 2 \beta z}
\end{aligned}
$$

Note that the magnitudes of the complex functions are in fact constants (with respect to position z):

$$
\begin{aligned}
& \left|V^{+}(z)\right|=\left|V_{0}^{+}\right| \\
& \left|V^{-}(z)\right|=\left|V_{0}^{+}\right| \\
& |\Gamma(z)|=\left|\frac{V_{0}^{-}}{V_{0}^{+}}\right|
\end{aligned}
$$

While the relative phase of these complex functions are expressed as a simple linear relationship with respect to z :

$$
\begin{aligned}
& \arg \left\{V^{+}(z)\right\}=-\beta z \\
& \arg \left\{V^{-}(z)\right\}=+\beta z \\
& \arg \{\Gamma(z)\}=+2 \beta z
\end{aligned}
$$

Now, contrast this with the complex current, voltage, impedance functions:

$$
\begin{aligned}
& V(z)=V_{0}^{+} e^{-j \beta z}+V_{0}^{-} e^{+j \beta z} \\
& I(z)=\frac{V_{0}^{+} e^{-j \beta z}-V_{0}^{-} e^{+j \beta z}}{Z_{0}} \\
& Z(z)=Z_{0} \frac{V_{0}^{+} e^{-j \beta z}+V_{0}^{-} e^{+j \beta z}}{V_{0}^{+} e^{-j \beta z}-V_{0}^{-} e^{+j \beta z}}
\end{aligned}
$$

With magnitude:

$$
\begin{aligned}
& |V(z)|=\left|V_{0}^{+} e^{-j \beta z}+V_{0}^{-} e^{+j \beta z}\right|=? ? \\
& |I(z)|=\frac{\left|V_{0}^{+} e^{-j \beta z}-V_{0}^{-} e^{+j \beta z}\right|}{Z_{0}}=? ? \\
& |Z(z)|=Z_{0} \frac{\left|V_{0}^{+} e^{-j \beta z}+V_{0}^{-} e^{+j \beta z}\right|}{\left|V_{0}^{+} e^{-j \beta z}-V_{0}^{-} e^{+j \beta z}\right|}=? ?
\end{aligned}
$$

and phase:

$$
\begin{aligned}
& \arg \{V(z)\}=\arg \left\{V_{0}^{+} e^{-j \beta z}+V_{0}^{-} e^{+j \beta z}\right\}=? ? \\
& \arg \{I(z)\}=\arg \left\{V_{0}^{+} e^{-j \beta z}-V_{0}^{-} e^{+j \beta z}\right\}=? ?
\end{aligned}
$$

$$
\arg \{Z(z)\}=\arg \left\{V_{0}^{+} e^{-j \beta z}+V_{0}^{-} e^{+j \beta z}\right\}
$$

$$
-\arg \left\{V_{0}^{+} e^{-j \beta z}-V_{0}^{-} e^{+j \beta z}\right\}
$$

= ??

A: Yes it is! However, this does not mean that we never determine $K(z), I(z)$, or $Z(z)$; these quantities are still fundamental and very important-particularly at each end of the transmission line!

The Terminated, Lossless Transmission Line

Now let's attach something to our transmission line. Consider a lossless line, length ℓ, terminated with a load Z_{L}.

Q: What is the current and voltage at each and every point on the transmission line (i.e., what is $I(z)$ and $V(z)$ for all points z where $z_{L}-\ell \leq z \leq z_{L}$?)?

A: To find out, we must apply boundary conditions!
In other words, at the end of the transmission line $\left(z=z_{L}\right)$ where the load is attached-we have many requirements that all must be satisfied!

1. To begin with, the voltage and current $\left(I\left(z=z_{L}\right)\right.$ and $V\left(z=z_{L}\right)$) must be consistent with a valid transmission line solution:

$$
\begin{aligned}
V\left(z=z_{L}\right) & =V^{+}\left(z=z_{L}\right)+V^{-}\left(z=z_{L}\right) \\
& =V_{0}^{+} e^{-j \beta z_{L}}+V_{0}^{-} e^{+j \beta z_{L}} \\
I\left(z=z_{L}\right) & =\frac{V_{0}^{+}\left(z=Z_{L}\right)}{Z_{0}}-\frac{V_{0}^{-}\left(z=z_{L}\right)}{Z_{0}} \\
& =\frac{V_{0}^{+}}{Z_{0}} e^{-j \beta z_{L}}-\frac{V_{0}^{-}}{Z_{0}} e^{+j \beta z_{L}}
\end{aligned}
$$

2. Likewise, the load voltage and current must be related by Ohm's law:

$$
V_{L}=Z_{L} I_{L}
$$

3. Most importantly, we recognize that the values $I\left(z=z_{L}\right)$, $V\left(z=z_{L}\right)$ and I_{L}, V_{L} are not independent, but in fact are strictly related by Kirchoff's Laws!

From KVL and KCL we find these requirements:

$$
\begin{aligned}
& V\left(z=z_{L}\right)=V_{L} \\
& I\left(z=z_{L}\right)=I_{L}
\end{aligned}
$$

These are the boundary conditions for this particular problem.
\rightarrow Careful! Different transmission line problems lead to different boundary conditions-you must access each problem individually and independently!

Combining these equations and boundary conditions, we find that:

$$
\begin{gathered}
V_{L}=Z_{L} I_{L} \\
V\left(z=z_{L}\right)=Z_{L} I\left(z=z_{L}\right) \\
V^{+}\left(z=z_{L}\right)+V^{-}\left(z=z_{L}\right)=\frac{z_{L}}{Z_{0}}\left(V^{+}\left(z=z_{L}\right)-V^{-}\left(z=z_{L}\right)\right)
\end{gathered}
$$

Rearranging, we can conclude:

$$
\frac{V^{-}\left(z=z_{L}\right)}{V^{+}\left(z=z_{L}\right)}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}
$$

Q: Hey wait as second! We earlier defined $V^{-}(z) / V^{+}(z)$ as reflection coefficient $\Gamma(z)$. How does this relate to the expression above?

A: Recall that $\Gamma(z)$ is a function of transmission line position z. The value $V^{-}\left(z=z_{L}\right) / V^{+}\left(z=z_{L}\right)$ is simply the value of function $\Gamma(z)$ evaluated at $z=z_{L}$ (i.e., evaluated at the end of the line):

$$
\frac{V^{-}\left(z=z_{L}\right)}{V^{+}\left(z=z_{L}\right)}=\Gamma\left(z=z_{L}\right)=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}
$$

This value is of fundamental importance for the terminated transmission line problem, so we provide it with its own special symbol $\left(\Gamma_{L}\right)$!

$$
\Gamma_{L} \doteq \Gamma\left(z=z_{L}\right)=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}
$$

Q: Wait! We earlier determined that:

$$
\Gamma(z)=\frac{Z(z)-Z_{0}}{Z(z)+Z_{0}}
$$

so it would seem that:

$$
\Gamma_{L}=\Gamma\left(z=z_{L}\right)=\frac{Z\left(z=z_{L}\right)-Z_{0}}{Z\left(z=z_{L}\right)+Z_{0}}
$$

Which expression is correct??

A: They both are! It is evident that the two expressions:

$$
\Gamma_{L}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}} \quad \text { and } \quad \Gamma_{L}=\frac{Z\left(z=z_{L}\right)-Z_{0}}{Z\left(z=z_{L}\right)+Z_{0}}
$$

are equal if:

$$
Z\left(z=z_{L}\right)=Z_{L}
$$

And since we know that from Ohm's Law:

$$
Z_{L}=\frac{V_{L}}{I_{L}}
$$

and from Kirchoff's Laws:

$$
\frac{V_{L}}{I_{L}}=\frac{V\left(z=z_{L}\right)}{I\left(z=z_{L}\right)}
$$

and that line impedance is:

$$
\frac{V\left(z=z_{L}\right)}{I\left(z=z_{L}\right)}=Z\left(z=z_{L}\right)
$$

we find it apparent that the line impedance at the end of the transmission line is equal to the load impedance:

$$
Z\left(z=z_{L}\right)=Z_{L}
$$

The above expression is essentially another expression of the boundary condition applied at the end of the transmission line.

Q: I'm confused! Just what are were we trying to accomplish in this handout?

A: We are trying to find $K(z)$ and $I(z)$ when a lossless transmission line is terminated by a load Z_{L} !

We can now determine the value of V_{0}^{-}in terms of V_{0}^{+}. Since:

$$
\Gamma_{L}=\frac{V^{-}\left(\boldsymbol{z}=\boldsymbol{z}_{L}\right)}{V^{+}\left(\boldsymbol{z}=\boldsymbol{z}_{L}\right)}=\frac{V_{0}^{-} e^{+j \beta z_{L}}}{V_{0}^{+} e^{-j \beta z_{L}}}
$$

We find:

$$
V_{0}^{-}=e^{-2 j \beta z_{L}} \Gamma_{L} V_{0}^{+}
$$

And therefore we find:

$$
\begin{gathered}
V^{-}(z)=\left(e^{-2 j \beta z_{L}} \Gamma_{L} V_{0}^{+}\right) e^{+j \beta z} \\
V(z)=V_{0}^{+}\left[e^{-j \beta z}+\left(e^{-2 j \beta z_{L}} \Gamma_{L}\right) e^{+j \beta z}\right] \\
I(z)=\frac{V_{0}^{+}}{Z_{0}}\left[e^{-j \beta z}-\left(e^{-2 j \beta z_{L}} \Gamma_{L}\right) e^{+j \beta z}\right]
\end{gathered}
$$

where:

$$
\Gamma_{L}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}
$$

$z_{L}=0$

Now, we can further simplify our analysis by arbitrarily assigning the end point z_{L} a zero value (i.e., $z_{L}=0$):

If the load is located at $z=0$ (i.e., if $z_{L}=0$), we find that:

$$
\begin{aligned}
& V(z=0)=V^{+}(z=0)+V^{-}(z=0) \\
& \\
& =V_{0}^{+} e^{-j \beta(0)}+V_{0}^{-} e^{+j \beta(0)} \\
& \\
& =V_{0}^{+}+V_{0}^{-} \\
& I(z=0)
\end{aligned} \begin{aligned}
& I(z=0) \\
& Z_{0} \frac{V_{0}^{+}(z=0)}{Z_{0}} \\
&=\frac{V_{0}^{+}}{Z_{0}} e^{-j \beta(0)}-\frac{V_{0}^{-}}{Z_{0}} e^{+j \beta(0)} \\
&=\frac{V_{0}^{+}-V_{0}^{-}}{Z_{0}} \\
& Z(z=0)=Z_{0}\left(\frac{V_{0}^{+}+V_{0}^{-}}{V_{0}^{+}-V_{0}^{-}}\right)
\end{aligned}
$$

Likewise, it is apparent that if $z_{L}=0, \Gamma_{L}$ and Γ_{0} are the same:

$$
\Gamma_{L}=\Gamma\left(z=z_{L}\right)=\frac{V^{-}(\boldsymbol{z}=0)}{V^{+}(\boldsymbol{z}=0)}=\frac{V_{0}^{-}}{V_{0}^{+}}=\Gamma_{0}
$$

Therefore:

$$
\Gamma_{L}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}=\Gamma_{0}
$$

Thus, we can write the line current and voltage simply as:

$$
\begin{array}{ll}
V(z)=V_{0}^{+}\left[e^{-j \beta z}+\Gamma_{L} e^{+j \beta z}\right] & {\left[\text { for } z_{L}=0\right]} \\
I(z)=\frac{V_{0}^{+}}{Z_{0}}\left[e^{-j \beta z}-\Gamma_{L} e^{+j \beta z}\right] &
\end{array}
$$

Q: But, how do we determine V_{0}^{+}??

A: We require a second boundary condition to determine V_{0}^{+}. The only boundary left is at the other end of the transmission line. Typically, a source of some sort is located there. This makes physical sense, as something must generate the incident wave!

Special Values of

 Load Impedance

 Load Impedance}

It's interesting to note that the load Z_{L} enforces a boundary condition that explicitly determines neither $K(z)$ nor $I(z)$-but completely specifies line impedance $Z(z)$!

$$
\begin{aligned}
& Z(z)=Z_{0} \frac{e^{-j \beta z}+\Gamma_{L} e^{+j \beta z}}{e^{-j \beta z}-\Gamma_{L} e^{+j \beta z}}=Z_{0} \frac{Z_{L} \cos \beta z-j Z_{0} \sin \beta z}{Z_{0} \cos \beta z-j Z_{L} \sin \beta z} \\
& \Gamma(z)=\Gamma_{L} e^{+j 2 \beta z}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}} e^{+j 2 \beta z}
\end{aligned}
$$

Likewise, the load boundary condition leaves $V^{+}(z)$ and $V^{-}(z)$ undetermined, but completely determines reflection coefficient function $\Gamma(z)$!

Let's look at some specific values of load impedance $Z_{L}=R_{L}+j X_{L}$ and see what functions $Z(z)$ and $\Gamma(z)$ result!

1. $Z_{L}=Z_{0}$

In this case, the load impedance is numerically equal to the characteristic impedance of the transmission line. Assuming the line is lossless, then Z_{0} is real, and thus:

$$
R_{L}=Z_{0} \quad \text { and } \quad X_{L}=0
$$

It is evident that the resulting load reflection coefficient is zero:

$$
\Gamma_{L}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}=\frac{Z_{0}-Z_{0}}{Z_{0}+Z_{0}}=0
$$

This result is very interesting, as it means that there is no reflected wave $V^{-}(z)$!

Thus, the total voltage and current along the transmission line is simply voltage and current of the incident wave:

$$
\begin{aligned}
& V(z)=V^{+}(z)=V_{0}^{+} e^{-j \beta z} \\
& I(z)=I^{+}(z)=\frac{V_{0}^{+}}{Z_{0}} e^{-j \beta z}
\end{aligned}
$$

Meaning that the line impedance is likewise numerically equal to the characteristic impedance of the transmission line for all line position z.

$$
Z(z)=\frac{V(z)}{I(z)}=Z_{0} \frac{V_{0}^{+} e^{-j \beta z}}{V_{0}^{+} e^{-j \beta z}}=Z_{0}
$$

And likewise, the reflection coefficient is zero at all points along the line:

$$
\Gamma(z)=\frac{V^{-}(z)}{V^{+}(z)}=\frac{0}{V^{+}(z)}=0
$$

We call this condition (when $Z_{L}=Z_{0}$) the matched condition, and the load $Z_{L}=Z_{0}$ a matched load.
2. $Z_{L}=j X_{L}$

For this case, the load impedance is purely reactive (e.g. a capacitor of inductor), the real (resistive) portion of the load is zero:

$$
R_{L}=0
$$

The resulting load reflection coefficient is:

$$
\Gamma_{L}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}=\frac{j X_{L}-Z_{0}}{j X_{L}+Z_{0}}
$$

Given that Z_{0} is real (i.e., the line is lossless), we find that this load reflection coefficient is generally some complex number.

We can rewrite this value explicitly in terms of its real and imaginary part as:

$$
\Gamma_{L}=\frac{j X_{L}-Z_{0}}{j X_{L}+Z_{0}}=\left(\frac{X_{L}^{2}-Z_{0}^{2}}{X_{L}^{2}+Z_{0}^{2}}\right)+j\left(\frac{2 Z_{0} X_{L}}{X_{L}^{2}+Z_{0}^{2}}\right)
$$

Yuck! This isn't much help!

Let's instead write this complex value Γ_{L} in terms of its magnitude and phase. For magnitude we find a much more straightforward result!

$$
\left|\Gamma_{L}\right|^{2}=\frac{\left|j X_{L}-Z_{0}\right|^{2}}{\left|j X_{L}+Z_{0}\right|^{2}}=\frac{X_{L}^{2}+Z_{0}^{2}}{X_{L}^{2}+Z_{0}^{2}}=1
$$

Its magnitude is one! Thus, we find that for reactive loads, the reflection coefficient can be simply expressed as:

$$
\Gamma_{L}=e^{j \theta_{T}}
$$

where

$$
\theta_{\Gamma}=\tan ^{-1}\left[\frac{2 Z_{0} X_{L}}{X_{L}^{2}-Z_{0}^{2}}\right]
$$

We can therefore conclude that for a reactive load:

$$
V_{0}^{-}=e^{j \theta_{\tau}} V_{0}^{+}
$$

As a result, the total voltage and current along the transmission line is simply (assuming $z_{L}=0$):

$$
\begin{aligned}
V(z) & =V_{0}^{+}\left(e^{-j \beta z}+e^{+j \theta_{L}} e^{+j \beta z}\right) \\
& =V_{0}^{+} e^{+j \theta_{\Gamma} / 2}\left(e^{-j\left(\beta z+\theta_{\Gamma} / 2\right)}+e^{+j\left(\beta z+\theta_{\Gamma} / 2\right)}\right) \\
& =2 V_{0}^{+} e^{+j \theta_{\Gamma} / 2} \cos \left(\beta z+\theta_{\Gamma} / 2\right)
\end{aligned}
$$

$$
\begin{aligned}
I(z) & =\frac{V_{0}^{+}}{Z_{0}}\left(e^{-j \beta z}-e^{+j \beta z}\right) \\
& =\frac{V_{0}^{+}}{Z_{0}} e^{+j \theta_{L} / 2}\left(e^{-j\left(\beta z+\theta_{L} / 2\right)}-e^{+j\left(\beta z+\theta_{L} / 2\right)}\right) \\
& =-j \frac{2 V_{0}^{+}}{Z_{0}} e^{+j \theta_{L} / 2} \sin \left(\beta z+\theta_{L} / 2\right)
\end{aligned}
$$

Meaning that the line impedance can be written in terms of a trigonometric function:

$$
Z(z)=\frac{V(z)}{I(z)}=j Z_{0} \cot \left(\beta z+\theta_{\Gamma} / 2\right)
$$

Note that this impedance is purely reactive $-V(z)$ and $I(z)$ are 90° out of phase!

We also note that the line impedance at the end of the transmission line is:

$$
Z(z=0)=j Z_{0} \cot \left(\theta_{\Gamma} / 2\right)
$$

With a little trigonometry, we can show (trust me!) that:

$$
\cot \left(\theta_{\Gamma} / 2\right)=\frac{X_{L}}{Z_{0}}
$$

and therefore:

$$
Z(z=0)=j Z_{0} \cot \left(\theta_{\Gamma} / 2\right)=j X_{L}=Z_{L}
$$

Just as we expected (and our boundary condition demanded)!
Finally, the reflection coefficient function is:

$$
\Gamma(z)=\frac{\boldsymbol{V}^{-}(z)}{\boldsymbol{V}^{+}(z)}=\frac{\boldsymbol{V}_{0}^{+} e^{+j \theta_{\mathrm{T}}} e^{+j \beta z}}{V_{0}^{+} e^{-j \beta z}}=e^{+j z\left(\beta z+\theta_{\Gamma} / 2\right)}
$$

Meaning that for purely reactive loads:

$$
|\Gamma(z)|=\left|e^{+j 2\left(\beta z+\theta_{\Gamma} / 2\right)}\right|=1
$$

In other words, the magnitude reflection coefficient function is equal to one-at each and every point on the transmission line.
3. $Z_{L}=R_{L}$

For this case, the load impedance is purely real (e.g. a resistor), and thus there is no reactive component:

$$
x_{L}=0
$$

The resulting load reflection coefficient is:

$$
\Gamma_{L}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}=\frac{R-Z_{0}}{R+Z_{0}}
$$

Given that Z_{0} is real (i.e., the line is lossless), we find that this load reflection coefficient must be a purely real value! In other words:

$$
\operatorname{Re}\left\{\Gamma_{L}\right\}=\frac{R-Z_{0}}{R+Z_{0}} \quad \operatorname{Im}\left\{\Gamma_{L}\right\}=0
$$

So a real-valued load Z_{L} results in a real valued load reflection coefficient G_{L}.

Now let's consider the line impedance $Z(z)$ and reflection coefficient function $\Gamma(z)$.

Q: I bet I know the answer to this one! We know that a purely imaginary (i.e., reactive) load results in a purely reactive line impedance.

Thus, a purely real (i.e., resistive) load will result in a purely resistive line impedance, right??

A: NOPE! The line impedance resulting from a real load is complex-it has both real and imaginary components!

Thus the line impedance, as well as reflection coefficient function, cannot be further simplified for the case where $Z_{L}=R_{L}$.

Q: Why is that?

A: Remember, a lossless transmission line has series inductance and shunt capacitance only. In other words, a length of lossless transmission line is a purely reactive device (it absorbs no energy!).

* If we attach a purely reactive load at the end of the transmission line, we still have a completely reactive system (load and transmission line). Because this system has no resistive (i.e., real) component, the general expressions for line impedance, line voltage, etc. can be significantly simplified.
* However, if we attach a purely real load to our reactive transmission line, we now have a complex system, with both real and imaginary (i.e., resistive and reactive) components. This complex case is exactly what our general expressions already describes-no further simplification is possible!

4. $Z_{L}=R_{L}+j X_{L}$

Now, let's look at the general case, where the load has both a real (resitive) and imaginary (reactive) component.

Q: Haven't we already determined all the general expressions (e.g., $\Gamma_{L}, V(z), I(z), Z(z), \Gamma(z)$) for this general case? Is there anything else left to be determined?

A: There is one last thing we need to discuss. It seems trivial, but its ramifications are very important!

For you see, the "general" case is not, in reality, quite so general. Although the reactive component of the load can be either positive or negative ($-\infty<X_{L}<\infty$), the resistive component of a passive load must be positive ($R_{L}>0$) -there's no such thing as negative resistor!

This leads to one very important and useful result. Consider the load reflection coefficient:

$$
\begin{aligned}
\Gamma_{L} & =\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}} \\
& =\frac{\left(R_{L}+j X_{L}\right)-Z_{0}}{\left(R_{L}+j X_{L}\right)+Z_{0}} \\
& =\frac{\left(R_{L}-Z_{0}\right)+j X_{L}}{\left(R_{L}+Z_{0}\right)+j X_{L}}
\end{aligned}
$$

Now let's look at the magnitude of this value:

$$
\begin{aligned}
\left|\Gamma_{L}\right|^{2} & =\left|\frac{\left(R_{L}-Z_{0}\right)+j X_{L}}{\left(R_{L}+Z_{0}\right)+j X_{L}}\right|^{2} \\
& =\frac{\left(R_{L}-Z_{0}\right)^{2}+X_{L}^{2}}{\left(R_{L}+Z_{0}\right)^{2}+X_{L}^{2}} \\
& =\frac{\left(R_{L}^{2}-2 R_{L} Z_{0}+Z_{0}^{2}\right)+X_{L}^{2}}{\left(R_{L}^{2}+2 R_{L} Z_{0}+Z_{0}^{2}\right)+X_{L}^{2}} \\
& =\frac{\left(R_{L}^{2}+Z_{0}^{2}+X_{L}^{2}\right)-2 R_{L} Z_{0}}{\left(R_{L}^{2}+Z_{0}^{2}+X_{L}^{2}\right)+2 R_{L} Z_{0}}
\end{aligned}
$$

It is apparent that since both R_{L} and Z_{0} are positive, the numerator of the above expression must be less than (or equal to) the denominator of the above expression.
\rightarrow In other words, the magnitude of the load reflection coefficient is always less than or equal to one!

$$
\left|\Gamma_{L}\right| \leq 1 \quad\left(\text { for } R_{L} \geq 0\right)
$$

Moreover, we find that this means the reflection coefficient function likewise always has a magnitude less than or equal to one, for all values of position z.

$$
|\Gamma(z)| \leq 1 \quad \text { (for all } z)
$$

Which means, of course, that the reflected wave will always have a magnitude less than that of the incident wave magnitude:

$$
\left|V^{-}(z)\right| \leq\left|V^{+}(z)\right| \quad \text { (for all } z \text {) }
$$

We will find out later that this result is consistent with conservation of energy-the reflected wave from a passive load cannot be larger than the wave incident on it.

The Propagation

Constant β

Recall that the activity along a transmission line can be expressed in terms of two functions, functions that we have described as wave functions:

$$
\begin{aligned}
& V^{+}(z)=V_{0}^{+} e^{-j \beta z} \\
& V^{-}(z)=V_{0}^{-} e^{+j \beta z}
\end{aligned}
$$

where β is a real constant with value:

$$
\beta=\omega \sqrt{L C}
$$

Q: What is this constant β ? What does it physically represent?
A: Remember, a complex function can be expressed in terms of its magnitude and phase:

$$
f(z)=|f(z)| e^{j \phi_{f}(z)}
$$

Thus:

$$
\begin{array}{ll}
\left|V^{+}(z)\right|=\left|V_{0}^{+}\right| & \phi^{+}(z)=-\beta z+\phi_{0}^{+} \\
\left|V^{-}(z)\right|=\left|V_{0}^{-}\right| & \phi^{-}(z)=+\beta z+\phi_{0}^{-}
\end{array}
$$

Therefore, $-\beta \boldsymbol{z}+\phi_{0}^{+}$represents the relative phase of wave $V^{+}(z)$; a function of transmission line position z. Since phase ϕ is expressed in radians, and z is distance (in meters), the value β must have units of:

$$
\beta=\frac{\phi}{z} \quad \frac{\text { radians }}{\text { meter }}
$$

The wavelength λ of the propagating wave is defined as the distance $\Delta z_{2 \pi}$ over which the relative phase changes by 2π radians. So:

$$
2 \pi=\phi\left(z+\Delta z_{2 \pi}\right)-\phi(z)=\beta \Delta z_{2 \pi}=\beta \lambda
$$

or, rearranging:

$$
\beta=\frac{2 \pi}{\lambda}
$$

Thus, the value β is thus essentially a spatial frequency, in the same way that ω is a temporal frequency:

$$
\omega=\frac{2 \pi}{T}
$$

where T is the time required for the phase of the oscillating signal to change by a value of 2π radians, i.e.:

$$
\omega T=2 \pi
$$

Note that this time is the period of a sinewave, and related to its frequency in Hertz (cycles/second) as:

$$
T=\frac{2 \pi}{\omega}=\frac{1}{f}
$$

Q: So, just how fast does this wave propagate down a transmission line?

We describe wave velocity in terms of its phase velocity-in other words, how fast does a specific value of absolute phase ϕ seem to propagate down the transmission line.

Since velocity is change in distance with respect to time, we need to first express our propagating wave in its real form:

$$
\begin{aligned}
v^{+}(z, t) & =\operatorname{Re}\left\{V^{+}(z) e^{-j \omega t}\right\} \\
& =\left|V_{0}^{+}\right| \cos \left(\omega t-\beta z+\phi_{0}^{+}\right)
\end{aligned}
$$

Thus, the absolute phase is a function of both time and frequency:

$$
\phi^{+}(\boldsymbol{z}, \boldsymbol{t})=\omega t-\beta \boldsymbol{z}+\phi_{0}^{+}
$$

Now let's set this phase to some arbitrary value of ϕ_{c} radians.

$$
\omega t-\beta \boldsymbol{z}+\phi_{0}^{+}=\phi_{c}
$$

For every time t, there is some location z on a transmission line that has this phase value ϕ_{c}. That location is evidently:

$$
z=\frac{\omega t+\phi_{0}^{+}-\phi_{c}}{\beta}
$$

Note as time increases, so too does the location z on the line where $\phi^{+}(z, t)=\phi_{c}$.

The velocity v_{p} at which this phase point moves down the line can be determined as:

$$
v_{p}=\frac{d z}{d t}=\frac{d\left(\frac{\omega t+\phi_{0}^{+}-\phi_{c}}{\beta}\right)}{d t}=\frac{\omega}{\beta}
$$

This wave velocity is the velocity of the propagating wave!
Note that the value:

$$
\frac{v_{p}}{\lambda}=\frac{\omega}{\beta} \frac{\beta}{2 \pi}=\frac{\omega}{2 \pi}=f
$$

and thus we can conclude that:

$$
v_{p}=f \lambda
$$

as well as:

$$
\beta=\frac{\omega}{v_{p}}
$$

Q: But these results were derived for the $V^{+}(z)$ wave; what about the other wave $\left(V^{-}(z)\right)$?

A: The results are essentially the same, as each wave depends on the same value β.

The only subtle difference comes when we evaluate the phase velocity. For the wave $V^{-}(z)$, we find:

$$
\phi^{-}(\boldsymbol{z}, \boldsymbol{t})=\omega t+\beta \boldsymbol{z}+\phi_{0}^{-}
$$

Note the plus sign associated with βz !
We thus find that some arbitrary phase value will be located at location:

$$
z=\frac{-\phi_{0}^{-}+\phi_{c}-\omega t}{\beta}
$$

Note now that an increasing time will result in a decreasing value of position z. In other words this wave is propagating in the direction of decreasing position z-in the opposite direction of the $V^{+}(z)$ wave!

This is further verified by the derivative:

$$
v_{p}=\frac{d z}{d t}=\frac{d\left(\frac{-\phi_{0}^{-}+\phi_{c}-\omega t}{\beta}\right)}{d t}=-\frac{\omega}{\beta}
$$

Where the minus sign merely means that the wave propagates in the $-z$ direction. Otherwise, the wavelength and velocity of the two waves are precisely the same!

Transmission Line Input Impedance

Consider a lossless line, length ℓ, terminated with a load Z_{L}.

Let's determine the input impedance of this line!
Q: Just what do you mean by input impedance?
A: The input impedance is simply the line impedance seen at the beginning $(z=-\ell)$ of the transmission line, i.e.:

$$
Z_{\text {in }}=Z(z=-\ell)=\frac{V(z=-\ell)}{I(z=-\ell)}
$$

Note $Z_{\text {in }}$ equal to neither the load impedance Z_{L} nor the characteristic impedance Z_{0} !

$$
Z_{\text {in }} \neq Z_{L} \quad \text { and } \quad Z_{\text {in }} \neq Z_{0}
$$

To determine exactly what $Z_{\text {in }}$ is, we first must determine the voltage and current at the beginning of the transmission line ($z=-\ell$).

$$
\begin{aligned}
& V(z=-\ell)=V_{0}^{+}\left[e^{+j \beta \ell}+\Gamma_{L} e^{-j \beta \ell}\right] \\
& I(z=-\ell)=\frac{V_{0}^{+}}{Z_{0}}\left[e^{+j \beta \ell}-\Gamma_{L} e^{-j \beta \ell}\right]
\end{aligned}
$$

Therefore:

$$
Z_{\text {in }}=\frac{V(z=-\ell)}{I(z=-\ell)}=Z_{0}\left(\frac{e^{+j \beta \ell}+\Gamma_{L} e^{-j \beta \ell}}{e^{+j \beta \ell}-\Gamma_{L} e^{-j \beta \ell}}\right)
$$

We can explicitly write $Z_{i n}$ in terms of load Z_{L} using the previously determined relationship:

$$
\Gamma_{L}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}
$$

Combining these two expressions, we get:

$$
\begin{aligned}
Z_{i n} & =Z_{0} \frac{\left(Z_{L}+Z_{0}\right) e^{+j \beta \ell}+\left(Z_{L}-Z_{0}\right) e^{-j \beta \ell}}{\left(Z_{L}+Z_{0}\right) e^{+j \beta \ell}-\left(Z_{L}-Z_{0}\right) e^{-j \beta \ell}} \\
& =Z_{0}\left(\frac{Z_{L}\left(e^{+j \beta \ell}+e^{-j \beta \ell}\right)+Z_{0}\left(e^{+j \beta \ell}-e^{-j \beta \ell}\right)}{Z_{L}\left(e^{+j \beta \ell}+e^{-j \beta \ell}\right)-Z_{0}\left(e^{+j \beta \ell}-e^{-j \beta \ell}\right)}\right)
\end{aligned}
$$

Now, recall Euler's equations:

$$
\begin{aligned}
& e^{+j \beta \ell}=\cos \beta \ell+j \sin \beta \ell \\
& e^{-j \beta \ell}=\cos \beta \ell-j \sin \beta \ell
\end{aligned}
$$

Using Euler's relationships, we can likewise write the input impedance without the complex exponentials:

$$
\begin{aligned}
Z_{\text {in }} & =Z_{0}\left(\frac{Z_{L} \cos \beta \ell+j Z_{0} \sin \beta \ell}{Z_{0} \cos \beta \ell+j Z_{L} \sin \beta \ell}\right) \\
& =Z_{0}\left(\frac{Z_{L}+j Z_{0} \tan \beta \ell}{Z_{0}+j Z_{L} \tan \beta \ell}\right)
\end{aligned}
$$

Note that depending on the values of β, Z_{0} and ℓ, the input impedance can be radically different from the load impedance Z_{L} !

Q: So is there a similar concept of input reflection coefficient?

A: There sure is! As you might expect, it is simply the value of reflection coefficient function $\Gamma(z)$ evaluated at the beginning of the transmission line (i.e., at $z=-\ell$):

$$
\Gamma_{i n} \doteq \Gamma(z=-\ell)=\Gamma_{0} e^{-j 2 \beta \ell}
$$

Note that the input impedance and input reflection coefficient are related in the same way as Z and Γ are at every other point on the transmission line:

$$
\Gamma_{\text {in }}=\frac{Z_{\text {in }}-Z_{0}}{Z_{\text {in }}+Z_{0}}
$$

Power Flow and

Return Loss

We have discovered that two waves propagate along a transmission line, one in each direction $\left(V^{+}(z)\right.$ and $\left.V^{-}(z)\right)$.

The result is that electromagnetic energy flows along the transmission line at a given rate (i.e., power).

Q: How much power flows along a transmission line, and where does that power go?

A: We can answer that question by determining the power absorbed by the load!

The time average power absorbed by an impedance Z_{L} is:

$$
\begin{aligned}
P_{a b s} & =\frac{1}{2} \operatorname{Re}\left\{V_{L} I_{L}^{*}\right\} \\
& =\frac{1}{2} \operatorname{Re}\left\{V(z=0) I(z=0)^{*}\right\} \\
& =\frac{1}{2 Z_{0}} \operatorname{Re}\left\{\left(V_{0}^{+}\left[e^{-j \beta 0}+\Gamma_{L} e^{+j \beta 0}\right]\right)\left(V_{0}^{+}\left[e^{-j \beta 0}-\Gamma_{L} e^{+j \beta 0}\right]\right)^{*}\right\} \\
& =\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}} \operatorname{Re}\left\{1-\left(\Gamma_{L}^{*}-\Gamma_{L}\right)-\left|\Gamma_{L}\right|^{2}\right\} \\
& =\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}\left(1-\left|\Gamma_{L}\right|^{2}\right)
\end{aligned}
$$

The significance of this result can be seen by rewriting the expression as:

$$
\begin{aligned}
P_{a b s} & =\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}\left(1-\left|\Gamma_{L}\right|^{2}\right) \\
& =\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}-\frac{\left|V_{0}^{+} \Gamma_{L}\right|^{2}}{2 Z_{0}} \\
& =\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}-\frac{\left|V_{0}^{-}\right|^{2}}{2 Z_{0}}
\end{aligned}
$$

The two terms in above expression have a very definite physical meaning. The first term is the time-averaged power of the wave propagating along the transmission line toward the load.

We say that this wave is incident on the load:

$$
P_{\text {inc }}=P_{+}=\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}
$$

Likewise, the second term of the $P_{a b s}$ equation describes the power of the wave moving in the other direction (away from the load). We refer to this as the wave reflected from the load:

$$
P_{\text {ref }}=P_{-}=\frac{\left|V_{0}^{-}\right|^{2}}{2 Z_{0}}=\frac{\left|\Gamma_{L}\right|^{2}\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}=\left|\Gamma_{L}\right|^{2} P_{\text {inc }}
$$

Thus, the power absorbed by the load is simply:

$$
P_{a b s}=P_{i n c}-P_{r e f}
$$

or, rearranging, we find:

$$
P_{i n c}=P_{a b s}+P_{r e f}
$$

This equation is simply an expression of the conservation of energy!

It says that power flowing toward the load ($P_{\text {inc }}$) is either absorbed by the load ($P_{a b s}$) or reflected back from the load ($P_{\text {ref }}$).

Note that if $\left|\Gamma_{L}\right|^{2}=1$, then $P_{\text {inc }}=P_{\text {ref }}$, and therefore no power is absorbed by the load.

This of course makes sense!
The magnitude of the reflection coefficient $\left(\left|\Gamma_{L}\right|\right)$ is equal to one only when the load impedance is purely reactive (i.e., purely imaginary).

Of course, a purely reactive element (e.g., capacitor or inductor) cannot absorb any power-all the power must be reflected!

Return Loss

The ratio of the reflected power to the incident power is known as return loss. Typically, return loss is expressed in dB:

$$
\text { R.L. }=-10 \log _{10}\left[\frac{P_{r e f}}{P_{i n c}}\right]=-10 \log _{10}\left|\Gamma_{L}\right|^{2}
$$

For example, if the return loss is 10 dB , then 10% of the incident power is reflected at the load, with the remaining 90% being absorbed by the load-we "lose" 10\% of the incident power

Likewise, if the return loss is 30 dB , then 0.1% of the incident power is reflected at the load, with the remaining 99.9% being absorbed by the load-we "lose" 0.1% of the incident power.

Thus, a larger numeric value for return loss actually indicates less lost power! An ideal return loss would be $\infty \mathrm{dB}$, whereas a return loss of 0 dB indicates that $\left|\Gamma_{L}\right|=1$--the load is reactive!

VSWR

Consider again the voltage along a terminated transmission line, as a function of position z :

$$
V(z)=V_{0}^{+}\left[e^{-j \beta z}+\Gamma_{L} e^{+j \beta z}\right]
$$

Recall this is a complex function, the magnitude of which expresses the magnitude of the sinusoidal signal at position z, while the phase of the complex value represents the relative phase of the sinusoidal signal.

Let's look at the magnitude only:

$$
\begin{aligned}
|V(z)| & =\left|V_{0}^{+}\right|\left|e^{-j \beta z}+\Gamma_{L} e^{+j \beta z}\right| \\
& =\left|V_{0}^{+}\right|\left|e^{-j \beta z}\right|\left|1+\Gamma_{L} e^{+j 2 \beta z}\right| \\
& =\left|V_{0}^{+}\right|\left|1+\Gamma_{L} e^{+j 2 \beta z}\right|
\end{aligned}
$$

ICBST the largest value of $|V(z)|$ occurs at the location z where:

$$
\Gamma_{L} e^{+j 2 \beta z}=\left|\Gamma_{L}\right|+j 0
$$

while the smallest value of $\mid V(z)$ loccurs at the location z where:

$$
\Gamma_{L} e^{+j 2 \beta z}=-\left|\Gamma_{L}\right|+j 0
$$

As a result we can conclude that:

$$
\begin{aligned}
& |V(z)|_{\max }=\left|V_{0}^{+}\right|\left(1+\left|\Gamma_{L}\right|\right) \\
& |V(z)|_{\text {min }}=\left|V_{0}^{+}\right|\left(1-\left|\Gamma_{L}\right|\right)
\end{aligned}
$$

The ratio of $|V(z)|_{\max }$ to $|V(z)|_{\text {min }}$ is known as the Voltage Standing Wave Ratio (VSWR):

$$
V S W R \doteq \frac{|V(z)|_{\max }}{|V(z)|_{\min }}=\frac{1+\left|\Gamma_{L}\right|}{1-\left|\Gamma_{L}\right|} \quad \therefore \quad 1 \leq V S W R \leq \infty
$$

Note if $\left|\Gamma_{L}\right|=0$ (i.e., $Z_{L}=Z_{0}$), then VSWR $=1$. We find for this case:

$$
|\boldsymbol{V}(\boldsymbol{z})|_{\max }=|\boldsymbol{V}(\boldsymbol{z})|_{\min }=\left|V_{0}^{+}\right|
$$

In other words, the voltage magnitude is a constant with respect to position z.

Conversely, if $\left|\Gamma_{L}\right|=1$ (i.e., $Z_{L}=j X$), then $V S W R=\infty$. We find for this case:

$$
|V(z)|_{\min }=0 \quad \text { and } \quad|V(z)|_{\max }=2\left|V_{0}^{+}\right|
$$

In other words, the voltage magnitude varies greatly with respect to position z.

As with return loss, VSWR is dependent on the magnitude of Γ_{L} (i.e, $\left|\Gamma_{\mathrm{L}}\right|$) only !

A Transmission Line

Connecting Source \& Load

We can think of a transmission line as a conduit that allows power to flow from an output of one device/network to an input of another.

To simplify our analysis, we can model the input of the device receiving the power with it input impedance (e.g., Z_{L}), while we can model the device output delivering the power with its Thevenin's or Norton's equivalent circuit.

Typically, the power source is modeled with its Thevenin's equivalent; however, we will find that the Norton's equivalent circuit is useful if we express the remainder of the circuit in terms of its admittance values (e.g., $Y_{0}, y_{L}, Y(z)$).

Recall from the telegrapher's equations that the current and voltage along the transmission line are:

$$
\begin{aligned}
& V(z)=V_{0}^{+} e^{-j \beta z}+V_{0}^{-} e^{+j \beta z} \\
& I(z)=\frac{V_{0}^{+}}{Z_{0}} e^{-j \beta z}-\frac{V_{0}^{-}}{Z_{0}} e^{+j \beta z}
\end{aligned}
$$

At $z=0$, we enforced the boundary condition resulting from Ohm's Law:

$$
Z_{L}=\frac{V_{L}}{I_{L}}=\frac{V(z=0)}{I(z=0)}=\frac{\left(V_{0}^{+}+V_{0}^{-}\right)}{\left(\frac{V_{0}^{+}}{Z_{0}}-\frac{V_{0}^{-}}{Z_{0}}\right)}
$$

Which resulted in:

$$
\frac{V_{0}^{-}}{V_{0}^{+}}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}} \doteq \Gamma_{L}
$$

So therefore:

$$
\begin{aligned}
& V(z)=V_{0}^{+}\left[e^{-j \beta z}+\Gamma_{L} e^{+j \beta z}\right] \\
& I(z)=\frac{V_{0}^{+}}{Z_{0}}\left[e^{-j \beta z}-\Gamma_{L} e^{+j \beta z}\right]
\end{aligned}
$$

We are left with the question: just what is the value of complex constant V_{0}^{+}?!?

This constant depends on the signal source! To determine its exact value, we must now apply boundary conditions at $z=-\ell$.

We know that at the beginning of the transmission line:

$$
\begin{aligned}
& V(z=-\ell)=V_{0}^{+}\left[e^{+j \beta \ell}+\Gamma_{L} e^{-j \beta \ell}\right] \\
& I(z=-\ell)=\frac{V_{0}^{+}}{Z_{0}}\left[e^{+j \beta \ell}-\Gamma_{L} e^{-j \beta \ell}\right]
\end{aligned}
$$

Likewise, we know that the source must satisfy:

$$
V_{g}=V_{i}+Z_{g} I_{i}
$$

To relate these three expressions, we need to apply boundary conditions at $z=-\ell$:

From KVL we find:

$$
V_{i}=V(z=-\ell)
$$

And from KCL:

$$
I_{i}=I(z=-\ell)
$$

Combining these equations, we find:

$$
\begin{aligned}
& V_{g}=V_{i}+Z_{g} I_{i} \\
& V_{g}=V_{0}^{+}\left[e^{+j \beta \ell}+\Gamma_{L} e^{-j \beta \ell}\right]+Z_{g} \frac{V_{0}^{+}}{Z_{0}}\left[e^{+j \beta \ell}-\Gamma_{L} e^{-j \beta \ell}\right]
\end{aligned}
$$

One equation \rightarrow one unknown $\left(V_{0}^{+}\right)!!$
Solving, we find the value of V_{0}^{+}:

$$
V_{0}^{+}=V_{g} e^{-j \beta \ell} \frac{Z_{0}}{Z_{0}\left(1+\Gamma_{i n}\right)+Z_{g}\left(1-\Gamma_{i n}\right)}
$$

where:

$$
\Gamma_{\text {in }}=\Gamma(z=-\ell)=\Gamma_{L} e^{-j 2 \beta \ell}
$$

There is one very important point that must be made about the result:

$$
V_{0}^{+}=V_{g} e^{-j \beta l} \frac{Z_{0}}{Z_{0}\left(1+\Gamma_{i n}\right)+Z_{g}\left(1-\Gamma_{i n}\right)}
$$

And that is-the wave $V_{0}^{+}(z)$ incident on the load Z_{L} is actually dependent on the value of load Z_{L} !!!!!

Remember:

$$
\Gamma_{i n}=\Gamma(\boldsymbol{z}=-\ell)=\Gamma_{L} e^{-j 2 \beta \ell}
$$

We tend to think of the incident wave $V_{0}^{+}(z)$ being "caused" by the source, and it is certainly true that $V_{0}^{+}(z)$ depends on the source-after all, $V_{0}^{+}(z)=0$ if $V_{g}=0$. However, we find from the equation above that it likewise depends on the value of the load!

Thus we cannot-in general-consider the incident wave to be the "cause" and the reflected wave the "effect". Instead, each wave must obtain the proper amplitude (e.g., V_{0}^{+}, V_{0}^{-}) so that the boundary conditions are satisfied at both the beginning and end of the transmission line.

Delivered Power

Q: If the purpose of a transmission line is to transfer power from a source to a load, then exactly how much power is delivered to Z_{L} for the circuit shown below??

A: We of course could determine V_{0}^{+}and V_{0}^{-}, and then determine the power absorbed by the load ($\rho_{a b s}$) as:

$$
P_{a b s}=\frac{1}{2} \operatorname{Re}\left\{V(z=0) I^{*}(z=0)\right\}
$$

However, if the transmission line is lossless, then we know that the power delivered to the load must be equal to the power "delivered" to the input ($P_{\text {in }}$) of the transmission line:

$$
P_{a b s}=P_{i n}=\frac{1}{2} \operatorname{Re}\left\{V(z=-\ell) I^{*}(z=-\ell)\right\}
$$

However, we can determine this power without having to solve for V_{0}^{+}and V_{0}^{-}(i.e., $V(z)$ and $I(z)$). We can simply use our knowledge of circuit theory!

We can transform load Z_{L} to the beginning of the transmission line, so that we can replace the transmission line with its input impedance $Z_{\text {in }}$:

Note by voltage division we can determine:

$$
V(z=-\ell)=V_{g} \frac{Z_{i n}}{Z_{g}+Z_{i n}}
$$

And from Ohm's Law we conclude:

$$
I(z=-\ell)=\frac{V_{g}}{Z_{g}+Z_{\text {in }}}
$$

And thus, the power $P_{\text {in }}$ delivered to $Z_{\text {in }}$ (and thus the power $P_{a b s}$ delivered to the load Z_{L}) is:

$$
\begin{aligned}
P_{a b s} & =P_{i n}=\frac{1}{2} \operatorname{Re}\left\{V(z=-\ell) I^{*}(z=-\ell)\right\} \\
& =\frac{1}{2} \operatorname{Re}\left\{V_{g} \frac{Z_{i n}}{Z_{g}+Z_{\text {in }}} \frac{V_{g}^{*}}{\left(Z_{g}+Z_{i n}\right)^{*}}\right\} \\
& =\frac{1}{2} \frac{\left|V_{g}\right|^{2}}{\left|Z_{g}+Z_{i n}\right|^{2}} \operatorname{Re}\left\{Z_{i n}\right\} \\
& =\frac{1}{2}\left|V_{g}\right|^{2} \frac{\left|Z_{i n}\right|^{2}}{\left|Z_{g}+Z_{i n}\right|^{2}} \operatorname{Re}\left\{Y_{i n}\right\}
\end{aligned}
$$

Note that we could also determine $P_{a b s}$ from our earlier expression:

$$
P_{a b s}=\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}\left(1-\left|\Gamma_{L}\right|^{2}\right)
$$

But we would of course have to first determine $V_{0}^{+}(!)$:

$$
V_{0}^{+}=V_{g} e^{-j \beta l} \frac{Z_{0}}{Z_{0}\left(1+\Gamma_{i n}\right)+Z_{g}\left(1-\Gamma_{i n}\right)}
$$

Special Cases of Source and Load Impedance

Let's look at specific cases of Z_{g} and Z_{L}, and determine how they affect V_{0}^{+}and $P_{a b s}$.
$Z_{g}=Z_{0}$

For this case, we find that V_{0}^{+}simplifies greatly:

$$
\begin{aligned}
V_{0}^{+} & =V_{g} e^{-j \beta \ell} \frac{Z_{0}}{Z_{0}\left(1+\Gamma_{i n}\right)+Z_{g}\left(1-\Gamma_{i n}\right)} \\
& =V_{g} e^{-j \beta \ell} \frac{Z_{0}}{Z_{0}\left(1+\Gamma_{i n}\right)+Z_{0}\left(1-\Gamma_{i n}\right)} \\
& =V_{g} e^{-j \beta \ell} \frac{1}{1+\Gamma_{i n}+1-\Gamma_{i n}} \\
& =\frac{1}{2} V_{g} e^{-j \beta \ell}
\end{aligned}
$$

Look at what this says!

It says that the incident wave in this case is independent of the load attached at the other end!

Thus, for the one case $Z_{g}=Z_{0}$, we in fact can consider $V^{+}(z)$ as being the source wave, and then the reflected wave $V^{-}(z)$ as being the result of this stimulus.

Remember, the complex value V_{0}^{+}is the value of the incident wave evaluated at the end of the transmission line $\left(V_{0}^{+}=V^{+}(z=0)\right)$. We can likewise determine the value of the incident wave at the beginning of the transmission line (i.e., $V^{+}(z=-\ell)$). For this case, where $Z_{g}=Z_{0}$, we find that this value can be very simply stated (!):

$$
\begin{aligned}
V^{+}(z=-\ell) & =V_{0}^{+} e^{-j \beta(z=-\ell)} \\
& =\left(\frac{1}{2} V_{g} e^{-j \beta \ell}\right) e^{+j \beta \ell} \\
& =\frac{V_{g}}{2}
\end{aligned}
$$

Likewise, we find that the delivered power for this case can be simply stated as:

$$
\begin{aligned}
P_{a b s} & =\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}\left(1-\left|\Gamma_{L}\right|^{2}\right) \\
& =\frac{\left|V_{g}\right|^{2}}{8 Z_{0}}\left(1-\left|\Gamma_{L}\right|^{2}\right)
\end{aligned}
$$

$$
Z_{i n}=Z_{g}^{*}
$$

For this case, we find Z_{L} takes on whatever value required to make $Z_{\text {in }}=Z_{g}^{*}$. This is a very important case!

First, using the fact that:

$$
\Gamma_{\text {in }}=\frac{Z_{\text {in }}-Z_{0}}{Z_{i n}+Z_{0}}=\frac{Z_{g}^{*}-Z_{0}}{Z_{g}^{*}+Z_{0}}
$$

We can show that (trust me!):

$$
V_{0}^{+}=V_{g} e^{-j \beta \ell} \frac{Z_{g}^{*}+Z_{0}}{4 \operatorname{Re}\left\{Z_{g}\right\}}
$$

Not a particularly interesting result, but let's look at the absorbed power.

$$
\begin{aligned}
P_{a b s} & =\frac{1}{2} \frac{\left|V_{g}\right|^{2}}{\left|Z_{g}+Z_{i n}\right|^{2}} \operatorname{Re}\left\{Z_{i n}\right\} \\
& =\frac{1}{2} \frac{\left|V_{g}\right|^{2}}{\left|Z_{g}+Z_{g}^{*}\right|^{2}} \operatorname{Re}\left\{Z_{g}^{*}\right\} \\
& =\frac{1}{2} \frac{\left|V_{g}\right|^{2}}{\left|2 \operatorname{Re}\left\{Z_{g}^{*}\right\}\right|^{2}} \operatorname{Re}\left\{Z_{g}^{*}\right\} \\
& =\frac{1}{2}\left|V_{g}\right|^{2} \frac{1}{4 \operatorname{Re}\left\{Z_{g}^{*}\right\}}=P_{a v 1}
\end{aligned}
$$

Although this result does not look particularly interesting either, we find the result is very important!

It can be shown that-for a given V_{g} and Z_{g}-the value of input impedance $Z_{\text {in }}$ that will absorb the largest possible amount of power is the value $Z_{i n}=Z_{g}^{*}$.

This case is known as the conjugate match, and is essentially the goal of every transmission line problem-to deliver the largest possible power to $Z_{\text {in }}$, and thus to Z_{L} as well!

This maximum delivered power is known as the available power ($P_{\text {avk }}$)of the source.

There are two very important things to understand about this result!

Very Important Thing \#1

Consider again the terminated transmission line:

Recall that if $Z_{L}=Z_{0}$, the reflected wave will be zero, and the absorbed power will be:

$$
P_{a b s}=\frac{\left|V_{g}\right|^{2}}{2} \frac{Z_{0}}{\left|Z_{0}+Z_{g}\right|^{2}}
$$

But note if $Z_{L}=Z_{0}$, the input impedance $Z_{\text {in }}=Z_{0}$-but then $Z_{\text {in }} \neq Z_{g}^{*}$ (generally)! In other words, $Z_{L}=Z_{0}$ does not (generally) result in a conjugate match, and thus setting $Z_{L}=Z_{0}$ does not result in maximum power absorption!

Q: Huh!? This makes no sense! A load value of $Z_{L}=Z_{0}$ will minimize the reflected wave ($P^{-}=0$)-all of the incident power will be absorbed. Any other value of $Z_{L}=Z_{0}$ will result in some of the incident wave being reflected-how in the world could this increase absorbed power?

After all, just look at the expression for absorbed power:

$$
P_{a b s}=\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}\left(1-\left|\Gamma_{L}\right|^{2}\right)
$$

Clearly, this value is maximized when $\Gamma_{L}=0$ (i.e., when $\left.Z_{L}=Z_{0}\right)!!!$

A: You are forgetting one very important fact! Although it is true that the load impedance Z_{L} affects the reflected wave power P^{-}, the value of Z_{L}-as we have shown in this handoutlikewise helps determine the value of the incident wave (i.e., the value of P^{+}) as well.

Thus, the value of Z_{L} that minimizes P^{-}will not generally maximize P^{+}, nor will the value of Z_{L} that maximizes P^{+} likewise minimize P^{-}.

Instead, the value of Z_{L} that maximizes the absorbed power is, by definition, the value that maximizes the difference $P^{+}-P^{-}$.

We find that this value of Z_{L} is the value that makes $Z_{i n}$ as "close" as possible to the ideal case of $Z_{\text {in }}=Z_{g}^{*}$.

Q: Yes, but what about the case where $Z_{g}=Z_{0}$? For that case, we determined that the incident wave is independent of Z_{L}. Thus, it would seem that at least for that case, the
delivered power would be maximized when the reflected power was minimized (i.e., $Z_{L}=Z_{0}$).

A: True! But think about what the input impedance would be in that case $-Z_{\text {in }}=Z_{0}$. Oh by the way, that provides a conjugate match $\left(Z_{i n}=Z_{0}=Z_{g}^{*}\right)$!

Thus, in some ways, the case $Z_{g}=Z_{0}=Z_{L}$ (i.e., both source and load impedances are numerically equal to Z_{0}) is ideal. A conjugate match occurs, the incident wave is independent of Z_{L}, there is no reflected wave, and all the math simplifies quite nicely:

$$
V_{0}^{+}=\frac{1}{2} V_{g} e^{-j \beta l} \quad P_{a b s}=\frac{\left|V_{g}\right|^{2}}{8 Z_{0}}
$$

Very Important Thing \#2

Note the conjugate match criteria says:
Given V_{g} and Z_{g}, maximum power transfer occurs when
$Z_{i n}=Z_{g}^{*}$.

It does NOT say:
Given V_{g} and $Z_{\text {in }}$, maximum power transfer occurs when $Z_{g}^{*}=Z_{i n}$.

This last statement is in fact false!

A factual statement is this:

Given V_{g} and $Z_{\text {in }}$, maximum power transfer occurs when $Z_{g}=0$.

A fact that is evident when observing the expression for available power:

$$
P_{\text {avaiable }}=\frac{1}{2}\left|V_{g}\right|^{2} \frac{1}{4 \operatorname{Re}\left\{Z_{g}^{*}\right\}}=\frac{\left|V_{g}\right|^{2}}{8 R_{g}}
$$

In other words, given a choice, use a source with the smallest possible output resistance (given that V_{g} remains constant). This will maximize the available power from your source!

Matching Networks

Consider again the problem where a passive load is attached to an active source:

The load will absorb power-power that is delivered to it by the source.

$$
\begin{aligned}
P_{L} & =\frac{1}{2} \operatorname{Re}\left\{V_{L} I_{L}^{*}\right\} \\
& =\frac{1}{2} \operatorname{Re}\left\{\left(V_{g} \frac{Z_{L}}{Z_{g}+Z_{L}}\right)\left(\frac{V_{g}}{Z_{g}+Z_{L}}\right)^{*}\right\} \\
& =\frac{1}{2}\left|V_{g}\right|^{2} \frac{\operatorname{Re}\left\{Z_{L}\right\}}{\left|Z_{g}+Z_{L}\right|^{2}} \\
& =\frac{1}{2}\left|V_{g}\right|^{2} \frac{R_{L}}{\left|Z_{g}+Z_{L}\right|^{2}}
\end{aligned}
$$

Recall that the power delivered to the load will be maximized (for a given V_{g} and Z_{g}) if the load impedance is equal to the complex conjugate of the source impedance $\left(Z_{L}=Z_{g}{ }^{\prime}\right)$.

We call this maximum power the available power $P_{a v}$ of the source-it is, after all, the largest amount of power that the source can ever deliver!

$$
P_{L}^{\text {max }} \doteq P_{a v 1}=\frac{\left|V_{g}\right|^{2}}{8 R_{g}}
$$

* Note the available power of the source is dependent on source parameters only (i.e., V_{g} and R_{g}). This makes sense! Do you see why?
* Thus, we can say that to "take full advantage" of all the available power of the source, we must to make the load impedance the complex conjugate of the source impedance.
* Otherwise, the power delivered to the load will be less than power made available by the source! In other "words":

$$
P_{L} \leq P_{a v}
$$

Q: But, you said that the load impedance typically models the input impedance of some useful device. We don't typically get to "select" or adjust this impedance-it is what it is. Must we then simply accept the fact that the delivered power will be less than the available power?

A: NO! We can in fact modify our circuit such that all available source power is delivered to the load-without in any way altering the impedance value of that load!

To accomplish this, we must insert a matching network between the source and the load:

The sole purpose of this matching network is to "transform" the load impedance into an input impedance that is conjugate matched to the source! I.E.:

$$
Z_{\text {in }}=\frac{V_{i n}}{I_{\text {in }}}=Z_{g}^{*}
$$

Because of this, all available source power is delivered to the input of the matching network (i.e., delivered to $Z_{i n}$):

$$
P_{i n}=P_{a v}
$$

Q: Wait just one second! The matching network ensures that all available power is delivered to the input of the matching network, but that does not mean (necessarily) that this power will be delivered to the load Z_{L}. The power delivered to the load could still be much less than the available power!

A: True! To ensure that the available power delivered to the input of the matching network is entirely delivered to the load, we must construct our matching network such that it cannot absorb any power-the matching network must be lossless!

We must construct our matching network entirely with reactive elements!

Examples of reactive elements include inductors, capacitors, transformers, as well as lengths of lossless transmission lines.

Thus, constructing a proper lossless matching network will lead to the happy condition where:

$$
P_{L}=P_{i n}=P_{a v l}
$$

* Note that the design and construction of this lossless network will depend on both the value of source impedance Z_{g} and load impedance Z_{L}.
* However, the matching network does not physically alter the values of either of these two quantities-the source and load are left physically unchanged!

Now, let's consider the matching network from a different perspective. Instead of defining it in terms of its input impedance when attached the load, let's describe it in terms of its output impedance when attached to the source:

This "new" source (i.e., the original source with the matching network attached) can be expressed in terms of its Thevenin's equivalent circuit:

$$
Z_{\text {out }}=R_{\text {out }}+j X_{\text {out }}
$$

This equivalent circuit can be determined by first evaluating (or measuring) the open-circuit output voltage $V_{\text {out }}^{\text {oc }}$:

And likewise evaluating (or measuring) the short-circuit output current $I_{\text {out }}^{s c}$:

From these two values ($V_{\text {out }}^{o c}$ and $I_{\text {out }}^{s c}$) we can determine the Thevenin's equivalent source:

$$
V_{s}=V_{\text {out }}^{o c} \quad Z_{\text {out }}=\frac{V_{\text {out }}^{o c}}{I_{\text {out }}^{o c}}
$$

Note that in general that $V_{s} \neq V_{g}$ and $Z_{\text {out }} \neq Z_{g}$-the matching network "transforms" both the values of both the impedance and the voltage source.

> Q: Arrrgg! Doesn't that mean that the available power of this "transformed" source will be different from the original?

A: Nope. If the matching network is lossless, the available power of this equivalent source is identical to the available power of the original source-the lossless matching network does not alter the available power!

$$
P_{a v \prime}=\frac{\left|V_{g}\right|^{2}}{8 R_{g}}=\frac{\left|V_{s}\right|^{2}}{8 R_{\text {out }}}
$$

Now, for a properly designed, lossless matching network, it turns out that (as you might have expected!) the output impedance $Z_{\text {out }}$ is equal to the complex conjugate of the load impedance. I.E.:

$$
Z_{\text {out }}=Z_{L}^{*}
$$

Thus, we can look at the matching network in two equivalent ways:

1. As a network attached to a load, one that "transforms" its impedance to $Z_{\text {in }}$-a value matched to the source impedance $Z_{g}:$

2. Or, as network attached to a source, one that
"transforms" its impedance to $Z_{\text {out }}$-a value matched to the load impedance Z_{L} :

Either way, the source and load impedance are conjugate matched-all the available power is delivered to the load!

Recall that a primary purpose of a transmission line is to allow the transfer of power from a source to a load.

Recall that the efficacy of this power transfer depends on:

1. the source impedance Z_{g}.
2. load impedance Z_{L}.
3. the transmission line characteristic impedance Z_{0}.
4. the transmission line length ℓ.

Matching Networks and Transmission Lines

Recall that a primary purpose of a transmission line is to allow the transfer of power from a source to a load.

Q: So, say we directly connect an arbitrary source to an arbitrary load via a length of transmission line. Will the power delivered to the load be equal to the available power of the source?

A: Not likely! Remember we determined earlier that the efficacy of power transfer depends on:

1. the source impedance Z_{g}.
2. load impedance Z_{L}.
3. the transmission line characteristic impedance Z_{0}.
4. the transmission line length ℓ.

Recall that maximum power transfer occurred only when these four parameters resulted in the input impedance of the transmission line being equal to the complex conjugate of the source impedance (i.e., $Z_{i n}^{*}=Z_{g}$).

It is of course unlikely that the very specific conditions of a conjugate match will occur if we simply connect a length of transmission line between an arbitrary source and load, and thus the power delivered to the load will generally be less than the available power of the source.

Q: Is there any way to use a matching network to fix this problem? Can the power delivered to the load be increased to equal the available power of the source if there is a transmission line connecting them?

A: There sure is! We can likewise construct a matching network for the case where the source and load are connected by a transmission line.

For example, we can construct a network to transform the input impedance of the transmission line into the complex conjugate of the source impedance.

Q: But, do we have to place the matching network between the source and the transmission line?

A: Nope! We could also place a (different) matching network between the transmission line and the load.

In either case, we find that at any and all points along this matched circuit, the output impedance of the equivalent source (i.e., looking left) will be equal to the complex conjugate of the input impedance (i.e., looking right).

Q: So which method should we chose? Do engineers typically place the matching network between the source and the transmission line, or place it between the transmission line and the load?

A: Actually, the typical solution is to do both!

We find that often there is a matching network between the a source and the transmission line, and between the line and the load.

The first network matches the source to the transmission line-in other words, it transforms the output impedance of the equivalent source to a value numerically equal to characteristic impedance Z_{0} :

$$
Z_{\text {out }}=Z_{0}
$$

The second network matches the load to the transmission line-in other words it transforms the load impedance to a value numerically equal to characteristic impedance Z_{0} :

Q: Yikes! Why would we want to build two separate matching networks, instead of just one?

A: By using two separate matching networks, we can decouple the design problem. Recall again that the design of a single matching network solution would depend on four separate parameters:

1. the source impedance Z_{g}.
2. load impedance $Z_{\llcorner }$.
3. the transmission line characteristic impedance Z_{0}.
4. the transmission line length ℓ.

Alternatively, the design of the network matching the source and transmission line depends on only:

1. the source impedance Z_{g}.
2. the transmission line characteristic impedance Z_{0}.

Whereas, the design of the network matching the load and transmission line depends on only:

1. the source impedance Z_{L}.
2. the transmission line characteristic impedance Z_{0}.

Note that neither design depends on the transmission line length ℓ !

Q: How is that possible?

A: Remember the case where $Z_{g}=Z_{0}=Z_{L}$. For that special case, we found that a conjugate match was the resultregardless of the transmission line length.

Thus, by matching the source to line impedance Z_{0} and likewise matching the load to the line impedance, a conjugate match is assured-but the length of the transmission line does not matter!

In fact, the typically problem for microwave engineers is to match a load (e.g., device input impedance) to a standard transmission line impedance (typically $Z_{0}=50 \Omega$); or to independently match a source (e.g., device output impedance) to a standard line impedance.

A conjugate match is thus obtained by connecting the two with a transmission line of any length!

The Impedance Matrix

Consider the 4-port microwave device shown below:

Note in this example, there are four identical transmission lines connected to the same "box". Inside this box there may be a very simple linear device/circuit, or it might contain a very large and complex linear microwave system.
\rightarrow Either way, the "box" can be fully characterized by its impedance matrix!

First, note that each transmission line has a specific location that effectively defines the input to the device (i.e., $z_{1 p,} z_{2 p}$, $z_{3 p}, z_{4 \rho}$). These often arbitrary positions are known as the port locations, or port planes of the device.

Thus, the voltage and current at port n is:

$$
V_{n}\left(z_{n}=z_{n \rho}\right) \quad I_{n}\left(z_{n}=z_{n \rho}\right)
$$

We can simplify this cumbersome notation by simply defining port n current and voltage as I_{n} and V_{n} :

$$
V_{n}=V_{n}\left(z_{n}=z_{n \rho}\right) \quad I_{n}=I_{n}\left(z_{n}=z_{n \rho}\right)
$$

For example, the current at port 3 would be $I_{3}=I_{3}\left(z_{3}=z_{3 \rho}\right)$.

Now, say there exists a non-zero current at port 1 (i.e., $I_{1} \neq 0$), while the current at all other ports are known to be zero (i.e., $I_{2}=I_{3}=I_{4}=0$).

Say we measure/determine the current at port 1 (i.e., determine I_{1}), and we then measure/determine the voltage at the port 2 plane (i.e., determine V_{2}).

The complex ratio between V_{2} and I_{1} is know as the transimpedance parameter Z_{21} :

$$
Z_{21}=\frac{V_{2}}{I_{1}}
$$

Likewise, the trans-impedance parameters Z_{31} and Z_{41} are:

$$
Z_{31}=\frac{V_{3}}{I_{1}} \quad \text { and } \quad Z_{41}=\frac{V_{4}}{I_{1}}
$$

We of course could also define, say, trans-impedance parameter Z_{34} as the ratio between the complex values I_{4} (the current into port 4) and V_{3} (the voltage at port 3), given that the current at all other ports (1,2, and 3) are zero.

Thus, more generally, the ratio of the current into port n and the voltage at port m is:

$$
Z_{m n}=\frac{V_{m}}{I_{n}} \quad \text { (given that } I_{k}=0 \text { for all } k \neq n \text {) }
$$

Q: But how do we ensure

 that all but one port current is zero?A: Place an open circuit at those ports!

Placing an open at a port (and it must be at the port!) enforces the condition that $I=0$.

Now, we can thus equivalently state the definition of transimpedance as:

$$
Z_{m n}=\frac{V_{m}}{I_{n}} \quad \text { (given that all ports } k \neq n \text { are open) }
$$

Q: As impossible as it sounds, this handout is even more boring and pointless than any of your previous efforts. Why are we studying this? After all, what is the likelihood that a device will have an open circuit on all but one of its ports?!

A: OK, say that none of our ports are open-circuited, such that we have currents simultaneously on each of the four ports of our device.

Since the device is linear, the voltage at any one port due to all the port currents is simply the coherent sum of the voltage at that port due to each of the currents!

For example, the voltage at port 3 can be determined by:

$$
V_{3}=Z_{34} I_{4}+Z_{33} I_{3}+Z_{32} I_{2}+Z_{31} I_{1}
$$

More generally, the voltage at port m of an N-port device is:

$$
V_{m}=\sum_{n=1}^{N} Z_{m n} I_{n}
$$

This expression can be written in matrix form as:

$$
\overline{\mathbf{V}}=\overline{\bar{Z}} \overline{\mathbf{I}}
$$

Where $\overline{\mathrm{I}}$ is the vector:

$$
\overline{\bar{I}}=\left[I_{1}, I_{2}, I_{3}, \cdots, I_{N}\right]^{\top}
$$

and $\overline{\mathrm{V}}$ is the vector:

$$
\overline{\mathbf{V}}=\left[V_{1}, V_{2}, V_{3}, \ldots, V_{N}\right]^{\top}
$$

And the matrix $\overline{\overline{\mathbf{Z}}}$ is called the impedance matrix:

$$
\overline{\overline{\mathbf{Z}}}=\left[\begin{array}{ccc}
Z_{11} & \ldots & Z_{1 n} \\
\vdots & \ddots & \vdots \\
Z_{m 1} & \cdots & Z_{m n}
\end{array}\right]
$$

The impedance matrix is a N by N matrix that completely characterizes a linear, N-port device. Effectively, the impedance matrix describes a multi-port device the way that Z_{L} describes a single-port device (e.g., a load)!

But beware! The values of the impedance matrix for a particular device or network, just like Z_{L}, are frequency dependent! Thus, it may be more instructive to explicitly write:

$$
\overline{\overline{\mathbf{Z}}}(\omega)=\left[\begin{array}{ccc}
Z_{11}(\omega) & \ldots & Z_{1 n}(\omega) \\
\vdots & \ddots & \vdots \\
Z_{m 1}(\omega) & \cdots & Z_{m n}(\omega)
\end{array}\right]
$$

Example: Using the Impedance Matrix

Consider the following circuit:

Where the 3-port device is characterized by the impedance matrix:

$$
\overline{\overline{\mathbf{Z}}}=\left[\begin{array}{lll}
2 & 1 & 2 \\
1 & 1 & 4 \\
2 & 4 & 1
\end{array}\right]
$$

Let's now determine all port voltages V_{1}, V_{2}, V_{3} and all currents I_{1}, I_{2}, I_{3}.

Q: How can we do that-we don't know what the device is made of! What's inside that box?

A: We don't need to know what's inside that box! We know its impedance matrix, and that completely characterizes the device (or, at least, characterizes it at one frequency).

Thus, we have enough information to solve this problem. From the impedance matrix we know:

$$
\begin{aligned}
& V_{1}=2 I_{1}+I_{2}+2 I_{3} \\
& V_{2}=I_{1}+I_{2}+4 I_{3} \\
& V_{3}=2 I_{1}+4 I_{2}+I_{3}
\end{aligned}
$$

Q: Wait! There are only 3 equations here, yet there are 6 unknowns!?

A: True! The impedance matrix describes the device in the box, but it does not describe the devices attached to it. We require more equations to describe them.

1. The source at port 1 is described by the equation:

$$
V_{1}=16.0-(1) I_{1}
$$

2. The short circuit on port 2 means that:

$$
V_{2}=0
$$

3. While the load on port 3 leads to:

$$
V_{3}=-(1) I_{3} \quad \text { (note the minus sign!) }
$$

Now we have 6 equations and 6 unknowns! Combining equations, we find:

$$
\begin{aligned}
& V_{1}=16-I_{1}=2 I_{1}+I_{2}+2 I_{3} \\
& \therefore \quad 16=3 I_{1}+I_{2}+2 I_{3} \\
& V_{2}=0=I_{1}+I_{2}+4 I_{3} \\
& \therefore 0=I_{1}+I_{2}+4 I_{3} \\
& V_{3}=-I_{3}=2 I_{1}+4 I_{2}+I_{3} \\
& \therefore \quad 0=2 I_{1}+4 I_{2}+2 I_{3}
\end{aligned}
$$

Solving, we find (I'll let you do the algebraic details!):

$$
\begin{array}{l|l|l}
I_{1}=7.0 & I_{2}=-3.0 & I_{3}=-1.0 \\
V_{1}=9.0 & V_{2}=0.0 & V_{3}=1.0
\end{array}
$$

The Scattering Matrix

At "low" frequencies, we can completely characterize a linear device or network using an impedance matrix, which relates the currents and voltages at each device terminal to the currents and voltages at all other terminals.

But, at microwave frequencies, it is difficult to measure total currents and voltages!

* Instead, we can measure the magnitude and phase of each of the two transmission line waves $V^{+}(z)$ and $V^{-}(z)$.
* In other words, we can determine the relationship between the incident and reflected wave at each device terminal to the incident and reflected waves at all other terminals.

These relationships are completely represented by the scattering matrix. It completely describes the behavior of a linear, multi-port device at a given frequency ω.

Consider the 4-port microwave device shown below:

Note in this example, there are four identical transmission lines connected to the same "box". Inside this box there may be a very simple linear device/circuit, or it might contain a very large and complex linear microwave system.
\rightarrow Either way, the "box" can be fully characterized by its scattering parameters!

First, note that each transmission line has a specific location that effectively defines the input to the device (i.e., $z_{1 p,} z_{2 p}$, $z_{3 p}, z_{4 \rho}$). These often arbitrary positions are known as the port locations, or port planes of the device.

Say there exists an incident wave on port 1 (i.e., $V_{1}^{+}\left(z_{1}\right) \neq 0$), while the incident waves on all other ports are known to be zero (i.e., $V_{2}^{+}\left(z_{2}\right)=V_{3}^{+}\left(z_{3}\right)=V_{4}^{+}\left(z_{4}\right)=0$).

Say we measure/determine the voltage of the wave flowing into port 1, at the port 1 plane (i.e., determine $V_{1}^{+}\left(z_{1}=z_{1 \rho}\right)$).
Say we then measure/determine the voltage of the wave flowing out of port 2, at the port 2 plane (i.e., determine $V_{2}^{-}\left(z_{2}=z_{2 p}\right)$).

The complex ratio between $V_{1}^{+}\left(z_{1}=z_{1 \rho}\right)$ and $V_{2}^{-}\left(z_{2}=z_{2 \rho}\right)$ is know as the scattering parameter S_{21} :

$$
S_{21}=\frac{V_{2}^{-}\left(z=z_{2}\right)}{V_{1}^{+}\left(z=z_{1}\right)}=\frac{V_{02}^{-} e^{+j \beta z_{2 \rho} \rho}}{V_{01}^{+} e^{-j \beta z_{1 \rho} \rho}}=\frac{V_{02}^{-}}{V_{01}^{+}} e^{+j \beta\left(z_{2} \rho+z_{1 \rho}\right)}
$$

Likewise, the scattering parameters S_{31} and S_{41} are:

$$
S_{31}=\frac{V_{3}^{-}\left(z_{3}=z_{3 \rho}\right)}{V_{1}^{+}\left(z_{1}=z_{1 \rho}\right)} \quad \text { and } \quad S_{41}=\frac{V_{4}^{-}\left(z_{4}=z_{4 \rho}\right)}{V_{1}^{+}\left(z_{1}=z_{1 \rho}\right)}
$$

We of course could also define, say, scattering parameter S_{34} as the ratio between the complex values $V_{4}^{+}\left(z_{4}=z_{4 \rho}\right)$ (the wave into port 4) and $V_{3}^{-}\left(z_{3}=z_{3 \rho}\right)$ (the wave out of port 3), given that the input to all other ports (1,2, and 3) are zero.
Thus, more generally, the ratio of the wave incident on port n to the wave emerging from port m is:

$$
\left.S_{m n}=\frac{V_{m}^{-}\left(z_{m}=z_{m \rho}\right)}{V_{n}^{+}\left(z_{n}=z_{n \rho}\right)} \quad \text { (given that } \quad V_{k}^{+}\left(z_{k}\right)=0 \text { for all } k \neq n\right)
$$

Note that frequently the port positions are assigned a zero value (e.g., $z_{1 \rho}=0, z_{2 \rho}=0$). This of course simplifies the scattering parameter calculation:

$$
S_{m n}=\frac{V_{m}^{-}\left(z_{m}=0\right)}{V_{n}^{+}\left(z_{n}=0\right)}=\frac{V_{0 m}^{-} e^{+j \beta 0}}{V_{0 n}^{+} e^{-j \beta 0}}=\frac{V_{0 m}^{-}}{V_{0 n}^{+}}
$$

We will generally assume that the port locations are defined as $z_{n p}=0$, and thus use the above notation. But remember where this expression came from!

Q: But how do we ensure that only one incident wave is non-zero?

A: Terminate all other ports with a matched load!

Note that if the ports are terminated in a matched load (i.e., $Z_{L}=Z_{0}$), then $\Gamma_{n L}=0$ and therefore:
$V_{n}^{+}\left(z_{n}\right)=0$
In other words, terminating a port ensures that there will be no signal incident on that port!

Q: Just between you and me, I think you've messed this up! In all previous handouts you said that if $\Gamma_{L}=0$, the wave in the minus direction would be zero:

$$
\boldsymbol{V}^{-}(\boldsymbol{z})=0 \quad \text { if } \quad \Gamma_{L}=0
$$

but just now you said that the wave in the positive direction would be zero:

$$
\boldsymbol{V}^{+}(\boldsymbol{z})=0 \quad \text { if } \quad \Gamma_{L}=0
$$

Of course, there is no way that both statements can be correct!

A: Actually, both statements are correct! You must be careful to understand the physical definitions of the plus and minus directions-in other words, the propagation directions of waves $V_{n}^{+}\left(z_{n}\right)$ and $V_{n}^{-}\left(z_{n}\right)!$

For example, we originally analyzed this case:

In this original case, the wave incident on the load is $V^{+}(\boldsymbol{z})$ (plus direction), while the reflected wave is $V^{-}(\boldsymbol{z})$ (minus direction).

Contrast this with the case we are now considering:

For this current case, the situation is reversed. The wave incident on the load is now denoted as $V_{n}^{-}\left(z_{n}\right)$ (coming out of port n), while the wave reflected off the load is now denoted as $V_{n}^{+}\left(z_{n}\right)$ (going into port n).

As a result, $V_{n}^{+}\left(z_{n}\right)=0$ when $\Gamma_{n L}=0$!

Perhaps we could more generally state that:

$$
V^{\text {reflected }}\left(\boldsymbol{z}=\boldsymbol{z}_{\boldsymbol{L}}\right)=\Gamma_{L} V^{\text {incident }}\left(\boldsymbol{z}=\boldsymbol{z}_{\boldsymbol{L}}\right)
$$

For each case, you must be able to correctly identify the mathematical statement describing the wave incident on, and reflected from, some passive load.

Like most equations in engineering, the variable names can change, but the physics described by the mathematics will not!

Now, back to our discussion of S-parameters. We found that if $z_{n p}=0$ for all ports n, the scattering parameters could be directly written in terms of wave amplitudes $V_{0 n}^{+}$and $V_{0 m}^{-}$.

$$
S_{m n}=\frac{V_{0 m}^{-}}{V_{0 n}^{+}} \quad \text { (given that } V_{k}^{+}\left(z_{k}\right)=0 \text { for all } k \neq n \text {) }
$$

Which we can now equivalently state as:

$$
S_{m n}=\frac{V_{0 m}^{-}}{V_{0 n}^{+}} \quad \text { (given that all ports, except port } n \text {, are matched) }
$$

A: OK, say that our ports are not matched, such that we have waves simultaneously incident on each of the four ports of our device.

Since the device is linear, the output at any port due to all the incident waves is simply the coherent sum of the output at that port due to each input wave!

For example, the output wave at port 3 can be determined by (assuming $z_{n \rho}=0$):

$$
V_{03}^{-}=S_{34} V_{04}^{+}+S_{33} V_{03}^{+}+S_{32} V_{02}^{+}+S_{31} V_{01}^{+}
$$

More generally, the output wave voltage at port m of an N-port device is:

$$
V_{0 m}^{-}=\sum_{n=1}^{N} S_{m n} V_{0 n}^{+} \quad\left(z_{n \rho}=0\right)
$$

This expression can be written in matrix form as:

$$
\overline{\mathbf{V}}^{-}=\overline{\overline{\mathbf{S}}} \overline{\mathbf{V}}^{+}
$$

Where $\overline{\mathbf{V}}^{-}$is the vector:

$$
\overline{\mathbf{V}}^{-}=\left[V_{01}^{-}, V_{02}^{-}, V_{03}^{-}, \ldots, V_{0 N}^{-}\right]^{\top}
$$

and $\overline{\mathbf{V}}^{+}$is the vector:

$$
\overline{\mathbf{V}}^{+}=\left[V_{01}^{+}, V_{02}^{+}, V_{03}^{+}, \ldots, V_{0 N}^{+}\right]^{\top}
$$

Therefore $\overline{\bar{S}}$ is the scattering matrix:

$$
\overline{\overline{\mathbf{S}}}=\left[\begin{array}{ccc}
S_{11} & \cdots & S_{1 n} \\
\vdots & \ddots & \vdots \\
S_{m 1} & \cdots & S_{m n}
\end{array}\right]
$$

The scattering matrix is a N by N matrix that completely characterizes a linear, N-port device. Effectively, the scattering matrix describes a multi-port device the way that Γ_{L} describes a single-port device (e.g., a load)!

But beware! The values of the scattering matrix for a particular

1device or network, just like Γ_{l}, are frequency dependent! Thus, it may be more instructive to explicitly write:

$$
\overline{\overline{\mathbf{S}}}(\omega)=\left[\begin{array}{ccc}
S_{11}(\omega) & \ldots & S_{1 n}(\omega) \\
\vdots & \ddots & \vdots \\
S_{m 1}(\omega) & \cdots & S_{m n}(\omega)
\end{array}\right]
$$

Example: The

Scattering Matrix

Say we have a 3-port network that is completely characterized at some frequency ω by the scattering matrix:

$$
\overline{\bar{S}}=\left[\begin{array}{lll}
0.0 & 0.2 & 0.5 \\
0.5 & 0.0 & 0.2 \\
0.5 & 0.5 & 0.0
\end{array}\right]
$$

A matched load is attached to port 2, while a short circuit has been placed at port 3:

Because of the matched load at port 2 (i.e., $\Gamma_{L}=0$), we know that:

$$
\frac{V_{2}^{+}\left(z_{2}=0\right)}{V_{2}^{-}\left(z_{2}=0\right)}=\frac{V_{02}^{+}}{V_{02}^{-}}=0
$$

and therefore:

$$
V_{02}^{+}=0
$$

NO!! Remember, the signal $V_{2}^{-}(z)$ is incident on the matched load, and $V_{2}^{+}(z)$ is the reflected wave from the load (i.e., $V_{2}^{+}(z)$ is incident on port 2). Therefore, $V_{02}^{+}=0$ is correct!

Likewise, because of the short circuit at port $3\left(\Gamma_{L}=-1\right)$:

$$
\frac{V_{3}^{+}\left(z_{3}=0\right)}{V_{3}^{-}\left(z_{3}=0\right)}=\frac{V_{03}^{+}}{V_{03}^{-}}=-1
$$

and therefore:

$$
V_{03}^{+}=-V_{03}^{-}
$$

Problem:

a) Find the reflection coefficient at port 1, i.e.:

$$
\Gamma_{1} \doteq \frac{V_{01}^{-}}{V_{01}^{+}}
$$

b) Find the transmission coefficient from port 1 to port 2, i.e.,

$$
T_{21} \doteq \frac{V_{02}^{-}}{V_{01}^{+}}
$$

I am amused by the trivial problems that you apparently find so difficult. I know that:

$$
\Gamma_{1}=\frac{V_{01}^{-}}{V_{01}^{+}}=S_{11}=0.0
$$

and

$$
T_{21}=\frac{V_{02}^{-}}{V_{01}^{+}}=S_{21}=0.5
$$

NO!!! The above statement is not correct!

Remember, $V_{01}^{-} / V_{01}^{+}=S_{11}$ only if ports 2 and 3 are terminated in matched loads! In this problem port 3 is terminated with a short circuit.

Therefore:

$$
\Gamma_{1}=\frac{V_{01}^{-}}{V_{01}^{+}} \neq S_{11}
$$

and similarly:

$$
T_{21}=\frac{V_{02}^{-}}{V_{01}^{+}} \neq S_{21}
$$

To determine the values T_{21} and Γ_{1}, we must start with the three equations provided by the scattering matrix:

$$
\begin{aligned}
& V_{01}^{-}=0.2 V_{02}^{+}+0.5 V_{03}^{+} \\
& V_{02}^{-}=0.5 V_{01}^{+} \quad+0.2 V_{03}^{+} \\
& V_{03}^{-}=0.5 V_{01}^{+}+0.5 V_{02}^{+}
\end{aligned}
$$

and the two equations provided by the attached loads:

$$
\begin{aligned}
& V_{02}^{+}=0 \\
& V_{03}^{+}=-V_{03}^{-}
\end{aligned}
$$

We can divide all of these equations by V_{01}^{+}, resulting in:

$$
\begin{aligned}
\Gamma_{1}=\frac{V_{01}^{-}}{V_{01}^{+}} & =0.2 \frac{V_{02}^{+}}{V_{01}^{+}}+0.5 \frac{V_{03}^{+}}{V_{01}^{+}} \\
T_{21}=\frac{V_{02}^{-}}{V_{01}^{+}} & =0.5 \quad+0.2 \frac{V_{03}^{+}}{V_{01}^{+}} \\
\frac{V_{03}^{-}}{V_{01}^{+}} & =0.5+0.5 \frac{V_{02}^{+}}{V_{01}^{+}} \\
\frac{V_{02}^{+}}{V_{01}^{+}} & =0 \\
\frac{V_{03}^{+}}{V_{01}^{+}} & =-\frac{V_{03}^{-}}{V_{01}^{+}}
\end{aligned}
$$

Look what we have-5 equations and 5 unknowns! Inserting equations 4 and 5 into equations 1 through 3 , we get:

$$
\begin{gathered}
\Gamma_{1}=\frac{V_{01}^{-}}{V_{01}^{+}}=-0.5 \frac{V_{03}^{+}}{V_{01}^{+}} \\
T_{21}=\frac{V_{02}^{-}}{V_{01}^{+}}=0.5-0.2 \frac{V_{03}^{+}}{V_{01}^{+}} \\
\frac{V_{03}^{-}}{V_{01}^{+}}=0.5
\end{gathered}
$$

Solving, we find:

$$
\begin{aligned}
& \Gamma_{1}=-0.5(0.5)=-0.25 \\
& T_{21}=0.5-0.2(0.5)=0.4
\end{aligned}
$$

Example: Scattering

Parameters

Consider a two-port device with a scattering matrix (at some specific frequency ω_{0}):

$$
\overline{\overline{\mathbf{S}}}\left(\omega=\omega_{0}\right)=\left[\begin{array}{cc}
0.1 & j 0.7 \\
j 0.7 & -0.2
\end{array}\right]
$$

and $Z_{0}=50 \Omega$.

Say that the transmission line connected to port 2 of this device is terminated in a matched load, and that the wave incident on port 1 is:

$$
V_{1}^{+}\left(z_{1}\right)=-j 2 e^{-j \beta z_{1}}
$$

where $z_{1 \rho}=z_{2 \rho}=0$.

Determine:

1. the port voltages $V_{1}\left(z_{1}=z_{1 \rho}\right)$ and $V_{2}\left(z_{2}=z_{2 \rho}\right)$.
2. the port currents $I_{1}\left(z_{1}=z_{1 \rho}\right)$ and $I_{2}\left(z_{2}=z_{2 \rho}\right)$.
3. the net power flowing into port 1
4. Since the incident wave on port 1 is:

$$
V_{1}^{+}\left(z_{1}\right)=-j 2 e^{-j \beta z_{1}}
$$

we can conclude (since $z_{1 \rho}=0$):

$$
\begin{aligned}
V_{1}^{+}\left(z_{1}=z_{1 \rho}\right) & =-j 2 e^{-j \beta z_{1 \rho}} \\
& =-j 2 e^{-j \beta(0)} \\
& =-j 2
\end{aligned}
$$

and since port 2 is matched (and only because its matched!), we find:

$$
\begin{aligned}
V_{1}^{-}\left(z_{1}=z_{1 \rho}\right) & =S_{11} V_{1}^{+}\left(z_{1}=z_{1 \rho}\right) \\
& =0.1(-j 2) \\
& =-j 0.2
\end{aligned}
$$

The voltage at port 1 is thus:

$$
\begin{aligned}
V_{1}\left(z_{1}=z_{1 \rho}\right) & =V_{1}^{+}\left(z_{1}=z_{1 \rho}\right)+V_{1}^{-}\left(z_{1}=z_{1 \rho}\right) \\
& =-j 2.0-j 0.2 \\
& =-j 2.2 \\
& =2.2 e^{-j \pi / 2}
\end{aligned}
$$

Likewise, since port 2 is matched:

$$
V_{2}^{+}\left(z_{2}=z_{2 \rho}\right)=0
$$

And also:

$$
\begin{aligned}
V_{2}^{-}\left(z_{2}=z_{2 \rho}\right) & =S_{21} V_{1}^{+}\left(z_{1}=z_{1 \rho}\right) \\
& =j 0.7(-j 2) \\
& =1.4
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
V_{2}\left(z_{2}=z_{2 \rho}\right) & =V_{2}^{+}\left(z_{2}=z_{2 \rho}\right)+V_{2}^{-}\left(z_{2}=z_{2 \rho}\right) \\
& =0+1.4 \\
& =1.4 \\
& =1.4 e^{-j 0}
\end{aligned}
$$

2. The port currents can be easily determined from the results of the previous section.

$$
\begin{aligned}
I_{1}\left(z_{1}=z_{1 \rho}\right) & =I_{1}^{+}\left(z_{1}=z_{1 \rho}\right)-I_{1}^{-}\left(z_{1}=z_{1 \rho}\right) \\
& =\frac{V_{1}^{+}\left(z_{1}=z_{1 \rho}\right)}{Z_{0}}-\frac{V_{1}^{-}\left(z_{1}=z_{1 \rho}\right)}{Z_{0}} \\
& =-j \frac{2.0}{50}+j \frac{0.2}{50} \\
& =-j \frac{1.8}{50} \\
& =-j 0.036 \\
& =0.036 e^{-j \pi / 2}
\end{aligned}
$$

and:

$$
\begin{aligned}
I_{2}\left(z_{2}=z_{2 p}\right) & =I_{2}^{+}\left(z_{2}=z_{2 p}\right)-I_{2}^{-}\left(z_{2}=z_{2 p}\right) \\
& =\frac{V_{2}^{+}\left(z_{2}=z_{2 p}\right)}{Z_{0}}-\frac{V_{2}^{-}\left(z_{2}=z_{2 p}\right)}{Z_{0}} \\
& =\frac{0}{50}-\frac{1.4}{50} \\
& =-0.028 \\
& =0.028 e^{+j \pi}
\end{aligned}
$$

3. The net power flowing into port 1 is:

$$
\begin{aligned}
\Delta P_{1} & =P_{1}^{+}-P_{1}^{-} \\
& =\frac{\left|V_{01}^{+}\right|^{2}}{2 Z_{0}}-\frac{\left|V_{01}^{-}\right|^{2}}{2 Z_{0}} \\
& =\frac{(2)^{2}-(0.2)^{2}}{2(50)} \\
& =0.0396 \text { Watts }
\end{aligned}
$$

Matched, Lossless. Reciprocal Devices

Often, we describe a device or network as matched, lossless, or reciprocal.

Q: What do these three terms mean??
A: Let's explain each of them one at a time!

Matched

A matched device is another way of saying that the input impedance at each port is numerically equal to Z_{0} when all other ports are terminated in matched loads. As a result, the input reflection coefficient of each port is zero-no signal will come out of a port when a signal is incident on that port (and only that port!).

In other words, we want:

$$
V_{0 m}^{-}=S_{m m} V_{0 m}^{+}=0 \quad \text { for all } m
$$

a result that occurs when:

$$
S_{m m}=0 \text { for all } m \text { if matched. }
$$

We find therefore that a matched device will exhibit a scattering matrix where all diagonal elements are zero.

Therefore:

$$
\overline{\bar{s}}=\left[\begin{array}{ccc}
0 & 0.1 & j 0.2 \\
0.1 & 0 & 0.3 \\
j 0.2 & 0.3 & 0
\end{array}\right]
$$

is an example of a scattering matrix for a matched, three port device.

Lossless

For a lossless device, all of the power that delivered to each device port must eventually find its way out!

In other words, power is not absorbed by the network-no power to be converted to heat!

Recall the power incident on some port m is related to the amplitude of the incident wave $\left(V_{0 m}^{+}\right)$as:

$$
P_{m}^{+}=\frac{\left|V_{0 m}^{+}\right|^{2}}{2 Z_{0}}
$$

While power of the wave exiting the port is:

$$
P_{m}^{-}=\frac{\left|V_{0 m}^{-}\right|^{2}}{2 Z_{0}}
$$

Thus, the power delivered to that port is the difference of the two:

$$
\Delta \rho_{m}=\rho_{m}^{+}-\rho_{m}^{-}=\frac{\left|V_{0 m}^{+}\right|^{2}}{2 Z_{0}}-\frac{\left|V_{0 m}^{-}\right|^{2}}{2 Z_{0}}
$$

Thus, the total power incident on an N-port device is:

$$
P^{+}=\sum_{m=1}^{N} P_{m}^{+}=\frac{1}{2 Z_{0}} \sum_{m=1}^{N}\left|V_{0 m}^{+}\right|^{2}
$$

Note that:

$$
\sum_{m=1}^{N}\left|\boldsymbol{V}_{0 m}^{+}\right|^{2}=\overline{\mathbf{V}^{+}} \boldsymbol{H} \overline{\mathbf{V}^{+}}
$$

where operator H indicates the conjugate transpose (i.e., Hermetian transpose) operation, so that $\overline{\mathbf{v}^{+}} \overline{\mathbf{v}^{+}}$is the inner product (i.e., dot product, or scalar product) of complex vector ${ }^{*}{ }^{+}$with itself.

Thus, we can write the total power incident on the device as:

$$
P^{+}=\frac{1}{2 Z_{0}} \sum_{m=1}^{N}\left|\boldsymbol{V}_{0 m}^{+}\right|^{2}=\frac{\overline{\mathbf{V}^{+}} \overline{\mathbf{V}^{+}}}{2 Z_{0}}
$$

Similarly, we can express the total power of the waves exiting our M-port network to be:

$$
\boldsymbol{P}^{-}=\frac{1}{2 Z_{0}} \sum_{m=1}^{N}\left|V_{0}^{-}\right|^{2}=\frac{{\overline{\mathbf{V}^{-}}}^{H} \overline{\mathbf{V}^{-}}}{2 Z_{0}}
$$

Now, recalling that the incident and exiting wave amplitudes are related by the scattering matrix of the device:

$$
\overline{\mathbf{V}}^{-}=\overline{\overline{\mathbf{S}}} \overline{\mathbf{V}}^{+}
$$

Thus we find:

$$
P^{-}=\frac{{\overline{\mathbf{V}^{-}}}^{H} \overline{\mathbf{V}^{-}}}{2 Z_{0}}=\frac{{\overline{\mathbf{V}^{+}}}^{H} \overline{\overline{\mathbf{S}}}^{H} \overline{\overline{\mathbf{S}}} \overline{\mathbf{V}^{+}}}{2 Z_{0}}
$$

Now, the total power delivered to the network is:

$$
\Delta P=\sum_{m=1}^{M} \Delta P=P^{+}-P^{-}
$$

Or explicitly:

$$
\begin{aligned}
\Delta P & =P^{+}-P^{-} \\
& =\frac{\overline{\mathbf{v}^{+}}{ }^{H} \overline{\mathbf{v}^{+}}}{2 Z_{0}}-\frac{\overline{\mathbf{v}^{+}} \overline{\overline{\mathbf{S}}}^{H} \overline{\overline{\mathbf{s}}} \overline{\mathbf{V}^{+}}}{2 Z_{0}} \\
& =\frac{1}{2 Z_{0}} \overline{\mathbf{V}^{+}}{ }^{H}\left(\overline{\overline{\mathbf{I}}}-\overline{\mathbf{S}}^{H} \overline{\overline{\mathbf{S}}}\right) \overline{\mathbf{V}^{+}}
\end{aligned}
$$

where $\overline{\bar{I}}$ is the identity matrix.
Q: Is there actually some point to this long, rambling, complex presentation?

A: Absolutely! If our M-port device is lossless then the total power exiting the device must always be equal to the total power incident on it.

If network is lossless, then $P^{+}=P^{-}$.

Or stated another way, the total power delivered to the device (i.e., the power absorbed by the device) must always be zero if the device is lossless!

If network is lossless, then $\Delta P=0$
Thus, we can conclude from our math that for a lossless device:

$$
\Delta P=\frac{1}{2 Z_{0}}{\overline{\mathbf{V}^{+}}}^{H}\left(\overline{\overline{\mathbf{I}}}-\overline{\overline{\mathbf{S}}}^{H} \overline{\overline{\mathbf{S}}}\right) \overline{\mathbf{V}^{+}}=0 \quad \text { for all } \overline{\mathbf{V}^{+}}
$$

This is true only if:

$$
\overline{\overline{\mathbf{I}}}-\overline{\overline{\mathbf{S}}}^{H} \overline{\overline{\mathbf{S}}}=0 \quad \Rightarrow \quad \overline{\overline{\mathbf{S}}}^{H} \overline{\overline{\mathbf{S}}}=\overline{\overline{\mathbf{I}}}
$$

Thus, we can conclude that the scattering matrix of a lossless device has the characteristic:

If a network is lossless, then $\overline{\bar{S}}^{H} \overline{\overline{\mathbf{S}}}=\overline{\bar{I}}$

Q: Huh? What exactly is this supposed to tell us?
A: A matrix that satisfies $\bar{S}^{H} \overline{\bar{S}}=\overline{\bar{I}}$ is a special kind of matrix known as a unitary matrix.

If a network is lossless, then its scattering matrix $\overline{\bar{S}}$ is unitary.

Q: How do I recognize a unitary matrix if I see one?

A: The columns of a unitary matrix form an orthonormal set!

$$
\overline{\overline{\boldsymbol{S}}}=\left[\begin{array}{llll}
S_{11} & S_{12} & S_{13} & S_{14} \\
S_{21} & S_{22} & S_{23} & S_{22} \\
S_{31} & S_{33} & S_{33} & S_{33} \\
S_{41} & S_{42} & S_{43} & S_{44}
\end{array}\right]
$$

In other words, each column of the scattering matrix will have a magnitude equal to one:

$$
\sum_{m=1}^{N}\left|S_{m n}\right|^{2}=1 \text { for all } n
$$

while the inner product (i.e., dot product) of dissimilar columns must be zero.

$$
\sum_{n=1}^{N} S_{n i} S_{n j}^{*}=S_{1 i} S_{1 j}^{*}+S_{2 i} S_{2 j}^{*}+\cdots+S_{N i} S_{N j}^{*}=0 \quad \text { for all } i \neq j
$$

In other words, dissimilar columns are orthogonal.

Consider, for example, a lossless three-port device. Say a signal is incident on port 1, and that all other ports are terminated. The power incident on port 1 is therefore:

$$
P_{1}^{+}=\frac{\left|V_{01}^{+}\right|^{2}}{2 Z_{0}}
$$

while the power exiting the device at each port is:

$$
P_{m}^{-}=\frac{\left|V_{0 m}^{-}\right|^{2}}{2 Z_{0}}=\frac{\left|S_{m 1} V_{01}^{-}\right|^{2}}{2 Z_{0}}=\left|S_{m 1}\right|^{2} P_{1}^{+}
$$

The total power exiting the device is therefore:

$$
\begin{aligned}
P^{-} & =P_{1}^{-}+P_{2}^{-}+P_{3}^{-} \\
& =\left|S_{11}\right|^{2} P_{1}^{+}+\left|S_{21}\right|^{2} P_{1}^{+}+\left|S_{31}\right|^{2} P_{1}^{+} \\
& =\left(\left|S_{11}\right|^{2}+\left|S_{21}\right|^{2}+\left|S_{31}\right|^{2}\right) P_{1}^{+}
\end{aligned}
$$

Since this device is lossless, then the incident power (only on port 1) is equal to exiting power (i.e, $P^{-}=P_{1}^{+}$). This is true only if:

$$
\left|S_{11}\right|^{2}+\left|S_{21}\right|^{2}+\left|S_{31}\right|^{2}=1
$$

Of course, this will likewise be true if the incident wave is placed on any of the other ports of this lossless device:

$$
\begin{aligned}
& \left|S_{12}\right|^{2}+\left|S_{22}\right|^{2}+\left|S_{32}\right|^{2}+\left|S_{42}\right|^{2}=1 \\
& \left|S_{13}\right|^{2}+\left|S_{23}\right|^{2}+\left|S_{33}\right|^{2}+\left|S_{43}\right|^{2}=1 \\
& \left|S_{14}\right|^{2}+\left|S_{24}\right|^{2}+\left|S_{34}\right|^{2}+\left|S_{44}\right|^{2}=1
\end{aligned}
$$

We can state in general then that:

$$
\sum_{m=1}^{3}\left|S_{m n}\right|^{2}=1 \quad \text { for all } n
$$

In other words, the columns of the scattering matrix must have unit magnitude (a requirement of all unitary matrices). It is apparent that this must be true for energy to be conserved.

An example of a (unitary) scattering matrix for a lossless device is:

$$
\overline{\overline{\mathbf{S}}}=\left[\begin{array}{cccc}
0 & 1 / 2 & j \sqrt{3} / 2 & 0 \\
1 / 2 & 0 & 0 & j \sqrt{3} / 2 \\
j \sqrt{3} / 2 & 0 & 0 & 1 / 2 \\
0 & j \sqrt{3} / 2 & 1 / 2 & 0
\end{array}\right]
$$

Reciprocal

Reciprocity results when we build a passive (i.e., unpowered) device with simple materials.

For a reciprocal network, we find that the elements of the scattering matrix are related as:

$$
S_{m n}=S_{n m}
$$

For example, a reciprocal device will have $S_{21}=S_{12}$ or $S_{32}=S_{23}$. We can write reciprocity in matrix form as:

$$
\overline{\overline{\mathbf{S}}}^{T}=\overline{\overline{\mathbf{S}}} \quad \text { if reciprocal }
$$

where T indicates (non-conjugate) transpose.

An example of a scattering matrix describing a reciprocal, but lossy and non-matched device is:

$$
\overline{\overline{\mathbf{s}}}=\left[\begin{array}{cccc}
0.10 & -0.40 & -j 0.20 & 0.05 \\
-0.40 & j 0.20 & 0 & j 0.10 \\
-j 0.20 & 0 & 0.10-j 0.30 & -0.12 \\
0.05 & j 0.10 & -0.12 & 0
\end{array}\right]
$$

Coaxial Transmission Lines

The most common type of transmission line!

The electric field $(\longrightarrow$)points in the direction \hat{a}_{ρ}.

The magnetic field (----)points in the direction \hat{a}_{ϕ}.
E. M. Power flows in the direction \hat{a}_{z}.

\Rightarrow A TEM wave!

Recall from EECS 220 that the capacitance per/unit length of a coaxial transmission line is:

$$
C=\frac{2 \pi \varepsilon}{\ln [\mathrm{~b} / \mathrm{a}]} \quad\left[\frac{\text { farads }}{\text { meter }}\right]
$$

And that the inductance per unit length is :

$$
L=\frac{\mu_{0}}{2 \pi} \ln \left[\frac{b}{a}\right] \quad\left[\frac{\text { Henries }}{m}\right]
$$

Where of course the characteristic impedance is:

$$
\begin{aligned}
Z_{o} & =\sqrt{\frac{L}{C}} \\
& =\frac{1}{2 \pi} \sqrt{\frac{\mu_{0}}{\varepsilon}} \ln \left[\frac{b}{a}\right]
\end{aligned}
$$

and:

$$
\beta=\omega \sqrt{L C}=\omega \sqrt{\mu_{0} \varepsilon}
$$

Therefore the propagation velocity of each TEM wave within a coaxial transmission line is:

$$
v_{p}=\frac{\omega}{\beta}=\frac{1}{\sqrt{\mu_{0} \varepsilon}}=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}} \frac{1}{\sqrt{\varepsilon_{r}}}=c \frac{1}{\sqrt{\varepsilon_{r}}}
$$

where $\varepsilon_{r}=\varepsilon / \varepsilon_{0}$ is the relative dielectric constant, and c is the "speed of light" ($c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$).

Note then that we can likewise express β in terms ε_{r} :

$$
\beta=\omega \sqrt{\mu_{0} \varepsilon}=\omega \sqrt{\mu_{0} \varepsilon_{0}} \sqrt{\varepsilon_{r}}=\frac{\omega}{c} \sqrt{\varepsilon_{r}}
$$

Now, the size of the coaxial line (a and b) determines more than simply Z_{0} and β (L and C) of the transmission line. Additionally, the line radius determines the weight and bulk of the line, as well as its power handling capabilities.

Unfortunately, these two characteristics conflict with each other!

1. Obviously, to minimize the weight and bulk of a coaxial transmission line, we should make a and b as small as possible.
2. However, for a given line voltage, reducing a and b causes the electric field within the coaxial line to increase (recall the units of electric field are V / m).

A higher electric field causes two problems: first, it results in greater line attenuation (larger α); second, it can result in dielectric breakdown.

Dielectric breakdown results when the electric field within the transmission line becomes so large that the dielectric material is ionized. Suddenly, the dielectric becomes a conductor, and the value G gets very large!

This generally results in the destruction of the coax line, and thus must be avoided. Thus, large coaxial lines are required when extremely low-loss is required (i.e., line length ℓ is large), or the delivered power is large.

Otherwise, we try to keep our coax lines as small as possible!

Coaxial Connectors

There are many types of connectors that are used to connect coaxial lines to RF/microwave devices. They include:

SMA

The workhorse microwave connector.
Small size, but works well to $>20 \mathrm{GHz}$.
By microwave standards, moderately priced.

BNC

The workhorse RF connector. Relatively small and cheap, and easy to connect. Don't use this connector past 2 GHz !

F

A poorman's BNC. The RF connector used on most consumer products such as TVs. Cheap, but difficult to connect and not reliable.
The original microwave connector. Good
performance (up to 18GHz), and
moderate cost, but large (about 2 cm in
diameter)! However, can handle greater
power than SMA.

Printed Circuit Board

Transmission Lines

Microstrip

Probably most popular PCB transmission line. Easy fabrication and connection, yet is slightly dispersive, lossy, and difficult to analyze.

Stripline
Better than microstrip in that it is not dispersive, and is more easily analyzed. However, fabrication and connection is more difficult.

Coplanar Waveguide

The newest technology. Perhaps easiest to fabricate and connect components, as both ground and conductor are on one side of the board.

Slotline

Essentially, a dual wire tranmission line. Best for "balanced" applications. Not used much.

An antenna array feed, constructed using microstrip transmission lines and circuits.

A wideband microstrip coupler.

