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III Antenna Fundamentals 
 
Now we will discuss what occurs between the transmitter and 
receiver.  Recall this region is called the channel, and we 
couple an electromagnetic wave to/from the channel using an 
antenna. 
 
A. Wave Propagation 
 
We must first review the basics of electromagnetic 
propagation in free-space. 
 
HO: EM Wave Propagation in Free-Space 
 
HO: The Poynting Vector 
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Electromagnetic 
Wave Propagation 

 
Maxwell’s equations were cobbled together 
from a variety of results from different 
scientists (e.g. Ampere, Faraday), whose 
work mainly was done using either static or 
slowly time-varying sources and fields. 
 
Maxwell brought these results together to form a complete 
theory of electromagnetics—a theory that then predicted a 
most startling result! 
 
To see this result, consider first the free-space Maxwell’s 
Equations in a source-free region (e.g., a vacuum).  In other 
words, the fields in a region far away from the current and 
charges that created them: 
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Say we take the curl of Faraday’s Law: 
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Inserting Ampere’s Law into this, we get: 
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Recalling that if ( ) 0r∇ ⋅ =E  then ( ) ( )2x x r r∇ ∇ ∇E E , we can 
write the following differential equation, one which describes 
the behavior on an electric field in a vacuum: 
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This result is none as the vector wave equation, and is very 
similar to the transmission line wave equations we studied at the 
beginning of this class. 
 
This result means that electric field ( )r ,tE  cannot be any 
arbitrary function of position r  and time t.  Instead, an electric 
field ( )r ,tE  is physically possible only if it satisfies the 
differential equation above! 
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Q:  So, what are some solutions to this equation? 
 
A:  The simplest solution is the plane-wave solution. It is: 
 

( ) ( ) ( )0 0j t z
x yˆ ˆr ,t E E e ω µ ε−= +E x y  

 
For this solution, the electric field is varying with time in a 
sinusoidal manner (that eigen function thing!), with an angular 
frequency of  radians/secω .  Note this field is a function of 
spatial coordinate z  only, but the direction of the electric field 
is orthogonal to the z-axis.  
 
Q:  What does this equation tell us about ( )r ,tE ?  What is this 
electric field doing?? 
 
A:  Lets plot ( ){ }Re r ,tE  as a function of position z, for 
different times t, and find out!
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Here the red dot indicates plane of constant phase, for this 
case a phase of zero radians, i.e., ( )0 0 0t zφ ω µ ε= − = .  Note 

that this dot appears to be moving forward along the z- axis as 
a function of time.   
 

The electric field is moving ! 
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Q:  How fast is it moving? 
 
A:  Lets see how fast the red dot (i.e., the plane of constant 
phase) is moving!  Rearranging ( )0 0 0t zω µ ε− = , we get the 
position z  of the dot as a function of time t : 
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Its velocity is just the time derivative of its position: 
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Hey we can calculate this! The electric field is moving at a 
velocity of: 
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A: True! We find that the magnetic field will likewise move in 
the same direction and with the same velocity as the electric 
field.   

 Q:  Hey wait a  minute! 3 x 108 
meters/second—that’s the speed of light!?! 
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We call the combination of the two fields a propagating (i.e., 
moving) electromagnetic wave. 
 

 Light is a propagating electromagnetic wave! 
 
 
This was a stunning result in Maxwell’s time.  No one had linked 
light with the phenomena of electricity and magnetism.  Among 
other things, it meant that “light” could be made with much 
greater wavelengths (i.e., lower frequencies) than the light 
visible to us humans. 
 
Henrich Hertz first succeeded in creating and measuring this 
low frequency “light”.  Since then, humans have put this low-
frequency light to great use. We often refer to it as a “radio 
waves”—a propagating electromagnetic wave with a frequency in 
the range of 1 MHz to 20 GHz.  We use it for all “wireless” 
technologies !   
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Given the results above, we can rewrite our plane-wave solution 
as: 
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Now, making the definition: 
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We get: 
 

( ) ( ) 0jk z j t
x yˆ ˆr ,t E E e e ω−= +E x y  

 
 
Q:  This plane-wave solution reminds me somewhat of the 
solution to the telegrapher’s equations, with 0k analogous to β . 
Is this just a coincidence? 
 
A: Nope!  Since we have voltages and currents along our 
transmission line, we must also have electric fields and magnetic 
fields.  In fact, the voltage and current wave solutions for a 
transmission line can likewise be expressed as propagating 
electric and magnetic (i.e., electromagnetic) fields. 
 
But, there is one super-huge difference between the 
transmission line solutions and the plane wave solution presented 
here! 
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The propagating wave along at transmission line is constrained 
to one of two directions—the plus z direction or the minus z 
direction. 
 
 
 
 
 
In contrast, nothing constrains a plane wave in free space—it 
can propagate in any and all directions! 
 
 
 
    
 
Although the plane-wave solution shown above propagates in the 
ẑ  direction, the solution would be equally valid in the ˆ−y  
direction or x̂  direction, or any arbitrary direction k̂ . 
 
The only constraint is that the direction of the electric field 
vector be orthogonal to the direction of wave propagation, i.e.: 
 
 

       ( )ˆ , 0r t⋅ =k E  
 
 
Q:  Are there any other solutions to this vector wave equation? 
 
A:  Plenty!  Since the wave equation is a linear differential 
equation, superposition holds. 
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In other words, a weighted sum of solutions is also a solution.  
This means that we can (and often do) have multiple waves 
propagating simultaneously in all different directions. 
 
Moreover, there are many other solutions besides the plane-
wave solution.  The most relevant of these, perhaps, is the 
spherical wave: 
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j teˆ ˆr ,t E , E , e
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Note the spherical wave is (most easily) expressed using the 
spherical coordinate system (i.e., coordinates , ,r θ φ  and base 
vectors ˆˆ ˆ, ,r θ φ ).   
 
The spherical wave propagates outward 
from the origin (i.e., in the direction 
ˆ ˆ=k r ).  In other words, a sphere of 
constant phase (as opposed to a plane of 
constant phase) propagates outward from 
the origin.  Thus, this sphere of constant 
phase “expands” as a function of time—
sort of like a balloon being filled with air! 
 
We likewise see from the expression above that the direction 
of the electric field is likewise orthogonal to the direction of 
wave propagation.  

( ) ( )ˆ ˆ, , 0r t r t⋅ = ⋅ =k E r E  
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The Poynting Vector 
 
Recall that plane waves and spherical waves are electro-
magnetic  waves . 
 
In other words, they consist of both electric and magnetic 
fields! 
 
Q: You provided us with the electric field representations of 
plane and spherical waves, is there some way to use these to 
determine the corresponding magnetic field? 
 
A:   You bet! Just apply Faraday’s Law: 
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If the electric field of a plane wave is: 
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Then we find the magnetic field must be: 
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Now, making the definition: 
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We find the corresponding magnetic field for our plane wave 
solution is thus: 
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The value 0η  is know as the wave impedance, or sometimes 
called the characteristic impedance of free space.   

 
Q: Why is 0η  referred to as an impedance?  Does it really 
have units of Ohms? 
 
A:  Consider the magnitude of both ( )r ,tE  and ( )r ,tH : 
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Therefore: 

( )
22
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Vr ,t E E m= +E  
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Using the same procedure for the magnetic field, we find: 
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Note that the magnitude of both the electric field and 
magnetic field of a plane wave are constants with respect to 
space and time! 
 
Now, let’s take the ratio of these two values: 
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The ratio of the electric and magnetic field magnitudes of a 
single plane wave (but only for a single plane wave!) is wave 
impedance 0η .  
 
 More importantly are the units of this value, which confirms 
that it is indeed an “impedance” value. 
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Now, let’s (finally!) get to the point (no pun intended) of this 
handout—The Poynting Vector. 
 
 

jstiles
stop
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The Poynting Vector is defined as: 
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Note the Poynting Vector is a real-valued vector! 

 
For our plane wave example, the Poynting Vector is: 
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Q:  Great.  Do mind telling me what exactly this &%$!@ result 
means!?! 
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A:  Let’s again do a dimensional analysis and see what we find.  
Since the Poynting Vector is a (cross) product of an electric 
field and a magnetic field, the units of the Poynting Vector 
will be the product of V/m and A/m: 
 

2 2
V A V A Watts
m m m m

⋅
⋅ = =  

 
The Poynting Vector has units of Watts per square meter—
power per unit area.  These are the units of power density. 
 
 

Thus, the Poynting Vector describes the magnitude 
and direction of the power flow associated with a 
propagating electromagnetic wave.   

 
 
 
This is why the Poynting Vector is a real-valued vector—
power is a real-valued quantity! 
 
*  The magnitude of the Poynting Vector (i.e., ( )rW ) 
describes the power flow in terms of its spatial density.   
 
For example, say a propagating wave has a power density of 
5.0mW/m2 .  Consider also a window whose surface area is 2 
square meters.   
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If this electromagnetic wave is propagating toward this 
window, then we will find that electromagnetic energy is 
passing through this window at a rate of 10.0 milli-Joules 
every second!  
 

 
 
 
 
 
 
 
 
 
 
 

*  The direction of the Poynting Vector indicates the 
direction of this power flow—the direction of the propagating 
wave. 
 
Note that the power density of a plane wave is a constant:  
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In other words, the magnitude and direction of a plane-wave 
Poynting Vector is identical at every point in the entire 
universe! 

 

( )2
25.0 2.0

10
sec

WP m
m

mJ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

=
( ) 25.0 Wr

m
=W  2m 

1m 



11/8/2006 The Poynting Vector 7/8 

Jim Stiles The Univ. of Kansas Dept. of EECS 

Q:  Is this likewise true for all propagating electromagnetic 
waves? 
 
A: Absolutely not! For example, the Poynting vector of a 
spherical wave is: 
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Here we will make the definition: 
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Therefore, the power density of a spherical wave is: 
 
 

( ) ( ) 2
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Clearly, this power density is not constant, but instead 
diminishes (as 21 r ) as we move away from the origin. 
 
Q:  So what’s up with this function ( )U ,θ φ ? 
 
A: The real, scalar function ( )U ,θ φ  is called the intensity of a 
spherical wave.  We will find that it is a very important 
function in determining the performance of an antenna. 
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Q:  Antenna? What does all this have to do with antennas? 
 
A:  A radiating antenna in fact launches a spherical wave.  
The expression above thus describes the power density 
produced by a radiating antenna (when located at the origin). 




