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The Transmission Line 
Wave Equation 

 
So, what functions I (z) and V (z) do satisfy both telegrapher’s 
equations?? 
 
To make this easier, we will combine the telegrapher equations 
to form one differential equation for V (z) and another for I(z). 
 
First, take the derivative with respect to z of the first 
telegrapher equation: 
 

 

 
Note that the second telegrapher equation expresses the 
derivative of I(z) in terms of V(z): 
 

 

 
Combining these two equations, we get an equation involving V (z) 
only: 
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where it is apparent that . 
 
In a similar manner (i.e., begin by taking the derivative of the 
second telegrapher equation), we can derive the differential 
equation: 

 

 
We have decoupled the telegrapher’s equations, such that we 
now have two equations involving one function only: 
 
 

 

 
BUT ! Again we ask, what functions satisfy these differential 
equations ?? 
 
Note only special functions satisfy these equations: if we take 
the double derivative of the function, the result is the original 
function (to within a constant)! 
 
Such functions do exist !  For example, . 
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Therefore, the general solution to these differential equations 
(and thus the telegrapher equations) are a linear superposition 
of these two solutions: 

 
 

 

 
 
where  are complex constants. 
 
 
   Q:  How do we determine  
 
   A:  We apply boundary conditions ! 
 
 
The solutions describe two waves propagating in the 
transmission line, one propagating in a direction (+z) and one 
propagating in the other direction (-z). 
 
Therefore, we call the differential equations introduced in this 
handout the transmission line wave equations. 
 


