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2. Microwave School 
 
We design radio systems using RF/microwave 
components. 
 
Q:  Why don’t we use the “usual” circuit 
components (e.g., resistors, capacitors, 
op-amps, transistors) ?? 
 
A: We do use these! But we require new devices because: 
 

1.  Our circuits are generally > λ in size ! 
 

2.  We require new functions that “non-RF” devices 
cannot provide. 
 

A.  Transmission Line Theory 
 
The most important fact about microwave devices is that they 
are connected together using transmission lines.  
 
Q:  So just what is a transmission line? 
 
A:  A passive, linear, two port device that allows bounded E. 
M. energy to flow from one device to another. 
 

  Sort of an “electromagnetic pipe” ! 
 
Q:  Oh, so it’s simply a conducting wire, right? 

 

 



 

8/22/2007 Microwave School 2/3 

Jim Stiles The Univ. of Kansas Dept. of EECS 

 
A:  NO!  At high frequencies, things get much more 
complicated! 
 
HO: The Telegraphers Equations 
 
HO: Time-Harmonic Solutions for Linear Circuits 
 
 
Q:  So, what complex functions  I(z) and V(z) do satisfy both 
telegrapher equations? 
 
A:  The solutions to the transmission line wave equations! 
 
HO: The Transmission Line Wave Equations 
 
Q:  Are the solutions for I(z) and V(z) completely 
independent, or are they related in any way ? 
 
A:  The two solutions are related by the transmission line 
characteristic impedance. 
 
HO: The Transmission Line Characteristic Impedance 
 
Q:  So what is the significance of the constant β? What does 
it tell us? 
 
A:   It describes the propagation of each wave along the 
transmission line.   
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HO: The Propagation Constant 
 
Q:   Is characteristic impedance Z0 the same as the concept 
of impedance I learned about in circuits class? 
 
A: NO!  The Z0 is a wave impedance.  However, we can also 
define line impedance, which is the same as that used in 
circuits. 
 
HO: Line Impedance 
 
Q:  These wave functions ( )V z+  and ( )V z−  seem to be 
important.  How are they related? 
 
A:  They are in fact very important!  They are related by a 
function called the reflection coefficient. 
 
HO:  The Reflection Coefficient 
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The Telegrapher Equations 
 
Consider a section of “wire”: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Q:  Huh ?! Current i and voltage v are a function of position z ?? 
Shouldn’t  ( , ) ( , )i z t i z z t= + ∆ and ( , ) ( , )v z t v z z t= + ∆  ? 
 
A: NO ! Because a wire is never a perfect conductor. 
 
A “wire” will have: 
 

1) Inductance 
2) Resistance 
3) Capacitance 
4) Conductance 

 

i (z,t) i (z+∆z,t) 

+ 
v (z,t) 
- 

+ 
v (z+∆z,t) 
- 

∆z 
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 i.e., 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Where: 
 

R = resistance/unit length 
L = inductance/unit length 
C = capacitance/unit length 
G = conductance/unit length 

 
∴ resistance of wire length ∆z  is R∆z. 

 
 
 
Using KVL, we find: 

( , )( , ) ( , ) ( , ) i z tv z z t v z t R z i z t L z
t

∂
+ ∆ − = − ∆ − ∆

∂
 

 
and from KCL: 

( , )( , ) ( , ) ( , ) v z ti z z t i z t G z v z t C z
t

∂
+ ∆ − = − ∆ − ∆

∂
 

i (z,t) i (z+∆z,t) 

+ 
 
v (z,t) 
 
- 

+ 
 
v (z+∆z,t) 
 
- 

R ∆z L ∆z 

G ∆z 
C ∆z 

∆z 
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Dividing the first equation by ∆z, and then taking the limit as 
0z∆ → : 

( , ) ( , ) ( , )( , )
0

lim
z

v z z t v z t i z tR i z t L
z t∆ →

+ ∆ − ∂
= − −

∆ ∂
 

 
which, by definition of the derivative, becomes: 
 

( , ) ( , )( , )v z t i z tR i z t L
z t

∂ ∂
= − −

∂ ∂
 

 
Similarly, the KCL equation becomes: 
 

( , ) ( , )( , )i z t v z tG v z t C
z t

∂ ∂
= − −

∂ ∂
 

 
These equations are known as the telegrapher’s equations ! 
 

 
 

( , ) ( , )( , )v z t i z tR i z t L
z t

∂ ∂
= − −

∂ ∂
 

 
( , ) ( , )( , )i z t v z tG v z t C
z t

∂ ∂
= − −

∂ ∂
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Time-Harmonic Solutions 
for Linear Circuits 

 
There are an unaccountably infinite number of solutions 
( )v z ,t  and ( )i z ,t  for the telegrapher’s equations!  However, 

we can simplify the problem by assuming that the function of 
time is time harmonic (i.e., sinusoidal), oscillating at some 
radial frequencyω  (e.g.,cos ωt ). 
 
Q:  Why on earth would we assume a sinusoidal function of 
time? Why not a square wave, or triangle wave, or a 
“sawtooth” function? 
 
A:   We assume sinusoids because they have a very special 
property!   
 
Sinusoidal time functions—and only a 
sinusoidal time functions—are the eigen 
functions of linear, time-invariant 
systems. 
  
Q: ??? 
 
A:  If a sinusoidal voltage source with frequency ω  is used to 
excite a linear, time-invariant circuit (and a transmission line 
is both linear and time invariant!), then the voltage at each 
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and every point with the circuit will likewise vary 
sinusoidally—at the same frequency ω ! 
 
Q: So what? Isn’t that obvious? 
 
A:  Not at all! If you were to excite a linear circuit with a 
square wave, or triangle wave, or sawtooth, you would find 
that—generally speaking—nowhere else in the circuit is the 
voltage a perfect square wave, triangle wave, or sawtooth.  
The linear circuit will effectively distort the input signal into 
something else! 
 
 
 
 
 
 
 
Q:  Into what function will the input signal be distorted? 
 
A:  It depends—both on the original form of the input signal, 
and the parameters of the linear circuit.  At different points 
within the circuit we will discover different functions of 
time—unless, of course, we use a sinusoidal input.  Again, for a 
sinusoidal excitation, we find at every point within circuit an 
undistorted sinusoidal function! 
 
Q:  So, the sinusoidal function at every point in the circuit is 
exactly the same as the input sinusoid? 
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A:  Not quite exactly the same.  Although at every point 
within the circuit the voltage will be precisely sinusoidal (with 
frequency ω ), the magnitude and relative phase of the 
sinusoid will generally be different at each and every point 
within the circuit. 
 
Thus, the voltage along a transmission line—when excited by a 
sinusoidal source—must have the form:  
  

( ) ( ) ( )( )v z ,t v z cos ωt φ z= +  
 

Thus, at some arbitrary location z along the transmission line, 
we must find a time-harmonic oscillation of magnitude ( )v z  
and relative phase ( )φ z . 

 
Now, consider Euler’s equation, which states: 
 

jψe cos ψ j sin ψ= +  
 
Thus, it is apparent that: 
 

{ }jψRe e cos ψ=  
 

and so we conclude that the voltage on a transmission line can 
be expressed as: 

( ) ( ) ( )( )
( ) ( )( ){ }
( ) ( ){ }

j ωt φ z

jφ z jωt

v z ,t v z cos ωt φ z

Re v z e

Re v z e e

+

+

= +

=

=
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Thus, we can specify the time-harmonic voltage at each an 
every location z along a transmission line with the complex 
function ( )V z : 

( ) ( ) ( )jφ zV z v z e −=  
 

where the magnitude of the complex function is the 
magnitude of the sinusoid: 
 

( ) ( )v z V z=  
 

and the phase of the complex function is the relative phase of 
the sinusoid : 

( ) ( ){ }φ z arg V z=  
 

Q:  Hey wait a minute! What happened to the time-harmonic 
function jωte ?? 
 
A:  There really is no reason to explicitly write the complex 
function jωte , since we know in fact (being the eigen function 
of linear systems and all) that if this is the time function at 
any one location (such as qt the excitation source) then this 
must be time function at all transmission line locations z ! 
 
The only unknown is the complex function ( )V z .  Once we 
determine ( )V z , we can always (if we so desire) “recover” the 
real function ( )v z ,t  as: 
 

( ) ( ){ }jωtv z ,t Re V z e=  
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Thus, if we assume a time-harmonic source, finding the 
transmission line solution ( )v z ,t  reduces to solving for the 
complex function ( )V z . 
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The Transmission Line 
Wave Equation 

 
Let’s assume that  ( , ) , and ( )v z t i z t  each have the time-
harmonic form: 
 

{ }( , ) Re ( ) j tv z t V z e ω=    and   { }( , ) Re ( ) j ti z t I z e ω=  

 
The time-derivative of these functions are: 
 

{ }( , ) Re ( ) Re ( )
j t

j tv z t eV z j V z e
t t

⎧ ⎫∂ ∂
= =⎨ ⎬∂ ∂⎩ ⎭

ω
ωω  

 

{ }( , ) Re ( ) Re ( )
j t

j ti z t eI z j I z e
t t

⎧ ⎫∂ ∂
= =⎨ ⎬

∂ ∂⎩ ⎭

ω
ωω  

 
The telegrapher’s equations thus become: 
 

{ }( ) ( ) ( )j t j tV zRe e Re R j L I z e
z

∂⎧ ⎫ = − +⎨ ⎬∂⎩ ⎭
ω ωω  

 

{ }( ) ( ) ( )j t j tI zRe e Re G j C V z e
z

∂⎧ ⎫ = − +⎨ ⎬∂⎩ ⎭
ω ωω  

 
And then simplifying, we have the complex form of 
telegrapher’s equations: 
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( ) ( ) ( )

( ) ( ) ( )

V z R j L I z
z

I z G j C V z
z

∂
= − +

∂

∂
= − +

∂

ω

ω

 

 
 

Note that these complex differential equations are not a 
function of time t ! 
 
*  The functions I(z) and V(z) are complex, where the 
magnitude and phase of the complex functions describe the 
magnitude and phase of the sinusoidal time function j te ω . 
 
*  Thus, I(z) and V(z) describe the current and voltage along the 

transmission line, as a function as position z. 
 
*  Remember, not just any function I(z) and V(z) can exist on a 

transmission line, but rather only those functions that 
satisfy the telegraphers equations. 

 
 
 
 
 
 
 
 
 
 

Our task, therefore, is to solve 
the telegrapher equations and 
find all solutions I (z) and V (z)! 
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Q: So, what functions I (z) and V (z) do satisfy both 
telegrapher’s equations?? 
 
A: To make this easier, we will combine the telegrapher 
equations to form one differential equation for V (z) and 
another for I(z). 
 
First, take the derivative with respect to z of the first 
telegrapher equation: 
 

( ) ( ) ( )

( ) ( )( )

ω

ω

∂ ∂⎧ ⎫= − +⎨ ⎬
∂ ∂⎩ ⎭
∂ ∂

= = − +
∂ ∂

V z R j L I z
z z

V z I zR j L
z z

2

2

 

 
Note that the second telegrapher equation expresses the 
derivative of I(z) in terms of V(z): 
 

( ) ( ) ( )ω∂
= − +

∂
I z G j C V z

z
 

 
Combining these two equations, we get an equation involving V (z) 
only: 

( ) ( )( ) ( )
2

2
V z R j L G j C V z
z

∂
= + +

∂
ω ω  

 
Now, we find at high frequencies that: 
 

     and       R j L G j Cω ω  
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and so we can approximate the differential equation as:   
 

( )( )( ) ( ) ( ) ( )
2

2 2
2

V z j L j C V z LC V z V z
z

∂
= = =

∂
ω ω ω β  

 
where it is apparent that: 
 

2 2LCβ ω  
 
 
In a similar manner (i.e., begin by taking the derivative of the 
second telegrapher equation), we can derive the differential 
equation: 

( ) ( )
2

2I z I z
z

β
∂

=
∂

 

 
We have decoupled the telegrapher’s equations, such that we 
now have two equations involving one function only: 
 
 

( ) ( )

( ) ( )

2
2

2
2

V z V z
z

I z I z
z

β

β

∂
=

∂

∂
=

∂

 

 
 
These are known as the transmission line wave equations. 
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Note only special functions satisfy these equations: if we take 
the double derivative of the function, the result is the original 
function (to within a constant)! 
 
 
 
 
 
 
 
 
A: Such functions do exist !   
 
For example, the functions  ( ) j zV z e β−=  and  ( ) j zV z e β+=  each 
satisfy this transmission line wave equation (insert these into 
the differential equation and see for yourself!).  
 
Likewise, since the transmission line wave equation is a linear 
differential equation, a weighted superposition of the two 
solutions is also a solution (again, insert this solution to and see 
for yourself!): 
 

( ) 0 0
j z j zV z V e V eβ β− ++ −= +  
 

In fact, it turns out that any and all possible solutions to the 
differential equations can be expressed in this simple form! 
 
Therefore, the general solution to these wave equations (and 
thus the telegrapher equations) are: 

 
 

Q: Yeah right! Every function that 
I know is changed after a double 
differentiation.  What kind of 
“magical” function could possibly 
satisfy this differential equation?  
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( )

( )

0 0

0 0

j z j z

j z j z

V z V e V e

I z I e I e

β β

β β

− ++ −

− ++ −

= +

= +

 

 
 
where 0 0 0 0and V , V , I , I+ − + −  are complex constants. 
 

 It is unfathomably important that you understand what this 
result means!  
 
It means that the functions V(z) and I(z), describing the 
current and voltage at all points z  along a transmission line, can 
always be completely specified with just four complex 
constants ( 0 0 0 0V , V , I , I+ − + − )!! 
 
We can alternatively write these solutions as: 
 
 

( ) ( ) ( )

( ) ( ) ( )

V z V z V z

I z I z I z

+ −

+ −

= +

= +

 

where:  
 

( ) ( )

( ) ( )

0 0

0 0

j z j z

j z j z

V z V e V z V e

I z I e I z I e

β β

β β

− ++ + − −

− ++ + − −
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The two terms in each solution describe two waves propagating 
in the transmission line, one wave (V +(z) or I +(z) ) propagating 
in one direction (+z) and the other wave (V -(z) or I -(z) ) 
propagating in the opposite direction (-z). 
 
 
 
 
 
 
 
Q:  So just what are the complex values 0 0 0 0V , V , I , I+ − + −  ? 
 
A:  Consider the wave solutions at one specific point on the 
transmission line—the point z = 0.  For example, we find that: 
 

( )
( )

( )

( 0)
0

0
0

0

0

0

1

j zV z V e
V e
V
V

β− =+ +

−+

+

+

= =

=

=

=

 

 
In other words, 0V +  is simply the complex value of the wave       
function V +(z) at the point z =0 on the transmission line! 
 

( ) 0
j zV z V e +− −= β  

z 

( ) 0
j zV z V e −+ += β  
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Likewise, we find:  
( )

( )

( )

0

0

0

0

0

0

V V z

I I z

I I z

− −

+ +

− −

= =

= =

= =

 

 
Again, the four complex values 0 0 0 0V , I , V , I+ + − −  are all that is 
needed to determine the voltage and current at any and all 
points on the transmission line.  
 
More specifically, each of these four complex constants 
completely specifies one of the four transmission line wave 
functions ( )V z+ , ( )I z+ , ( )V z− , ( )I z− . 
 
 
 
 
 
 
 
 
A:  As you might expect, the voltage and current on a 
transmission line is determined by the devices attached to it on 
either end (e.g., active sources and/or passive loads)! 
 
The precise values of 0 0 0 0V , I , V , I+ + − −  are therefore determined 
by satisfying the boundary conditions applied at each end of 
the transmission line—much more on this later! 

Q:  But what determines these wave 
functions?  How do we find the values 
of constants  0 0 0 0V , I , V , I+ + − −? 
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The Characteristic 
Impedance of a 
Transmission Line 

 
So, from the telegrapher’s differential equations, we know that 
the complex current I(z) and voltage V (z) must have the form: 
 

0 0

0 0

j z j z

j z j z

V ( z ) V e V e

I ( z ) I e I e

β β

β β

− ++ −

− ++ −

= +

= +

 

 
 
Let’s insert the expression for V (z) into the first telegrapher’s 
equation, and see what happens ! 
 

0 0
j z j zdV ( z ) j V e j V e j L I ( z )

dz
− ++ −= − + = −β ββ β ω  

 
Therefore, rearranging, I (z) must be: 
 

0 0( )j z j zI ( z ) V e V e
L

− ++ −= −β ββ
ω
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A:  Easy ! Both expressions for current are equal to each other. 
 

0 0 0 0( )j z j z j z j zI ( z ) I e I e V e V e
L

β β β ββ
ω

− + − ++ − + −= + = −  

 
For the above equation to be true for all z, 0 0 and I V  must be 
related as: 
 

0 0 0 0      and        z z z zI e V e I e V e
L L

+ − + − − + − +⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

−γ γ γ γ

ω ω
β β  

 
Or—recalling that ( )0

j zV e V z−+ +=β   (etc.)—we can express this 
in terms of the two propagating waves: 
 

( ) ( ) ( ) ( )      and        I z V z I z V z
L L

+ + − −⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

−
ω ω
β β  

 
 Now, we note that since: 
 

 LC=β ω  
 
 

Q: But wait !  I thought we already knew 
current I(z). Isn’t it: 
 

0 0
j z j zI ( z ) I e I eβ β− ++ −= +   ?? 

 
How can both expressions for I(z) be true?? 
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We find that: 
 

 LC C
L L L
= =
ω

ω ω
β  

 
Thus, we come to the startling conclusion that: 
 

 
( )
( )

( )
( )

      and      
V VL L
I C I C

z z
z z

+ −

+ −

−
= =  

 
 
 
Q:  What’s so startling about this conclusion? 
 
A:  Note that although the magnitude and phase of each 
propagating wave is a function of transmission line position z 
(e.g., ( )V z+  and ( )I z+ ), the ratio of the voltage and current of 
each wave is independent of position—a  constant with respect 
to position z ! 
 
Although 0 0 and V I± ±  are determined by boundary conditions 
(i.e., what’s connected to either end of the transmission line), 
the ratio 0 0V I± ± is determined by the parameters of the 
transmission line only (R, L, G, C). 
 

 This ratio is an important characteristic of a transmission 
line, called its Characteristic Impedance Z0. 
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0 0
0

0 0

V V LZ
I I C

+ −

+ −

−
= =  

 
 
We can therefore describe the current and voltage along a 
transmission line as: 
 
 

0 0

0 0

0 0

j z j z

j z j z

V ( z ) V e V e

V VI ( z ) e e
Z Z

β β

β β

− ++ −

+ −
− +

= +

= −

 

 
 
or equivalently: 
 
 

0 0 0 0

0 0

j z j z

j z j z

V ( z ) Z I e Z I e

I ( z ) I e I e

β β

β β

− ++ −

− ++ −

= −

= +

 

 

 

Note that instead of characterizing a transmission line with real 
parameters L and C, we can (and typically do!) describe a 
lossless transmission line using real parameters Z0 and β . 



 

8/22/2007 The Propagation Constant B 1/5 

Jim Stiles The Univ. of Kansas Dept. of EECS 

The Propagation 
Constant β 

 
Recall that the activity along a transmission line can be 
expressed in terms of two functions, functions that we have 
described as wave functions: 
 

( )

( )

0

0

j z

j z

V z V e

V z V e

β

β

−+ +

+− −

=

=

 
 
where β is a real constant with value:  
 

LC=β ω  
 

Q:  What is this constant β? What does it physically represent?  
 
A:  Remember, a complex function can be expressed in terms of 
its magnitude and phase: 
 

( ) ( ) ( )fj zf z f z e φ=  
Thus: 
 

( ) ( )

( ) ( )

0 0

0 0

V z V z z

V z V z z

φ β φ

φ β φ

+ + + +

− − − −

= = − +

= = + +
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Therefore, 0zβ φ +− +  represents the relative phase of wave 
( )V z+ ; a function of transmission line position z.  Since phase φ  

is expressed in radians, and z is distance (in meters), the value 
β must have units of: 
 

radians     
meterz

=
φβ  

 
The wavelength λ  of the propagating wave is defined as the 
distance 2z π∆  over which the relative phase changes by 2π  
radians. So: 
 

2 22 ( )- ( ) = =z z z zπ ππ φ φ β β λ= + ∆ ∆  
 
or,  rearranging: 

2
=

πβ
λ

 

 
Thus, the value β  is thus essentially a spatial frequency, in the 
same way that ω  is a temporal frequency: 
 

2
T

π
ω =  

 
where T  is the time required for the phase of the oscillating 
signal to change by a value of 2π  radians, i.e.: 
 

2Tω π=  
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Note that this time is the period of a sinewave, and related to 
its frequency in Hertz (cycles/second) as: 
 

2 1T
f

π
ω

= =  

 
Q:  So, just how fast does this wave propagate down a 
transmission line? 
 
We describe wave velocity in terms of its phase velocity—in 
other words, how fast does a specific value of absolute phase φ  
seem to propagate down the transmission line. 
 
Since velocity is change in distance with respect to time, we 
need to first express our propagating wave in its real form: 
 

( ) ( ){ }
( )0 0

j tv z ,t Re V z e

V cos t z

ω

ω β φ

−+ +

+ +

=

= − +
 

 
Thus, the absolute phase is a function of both time and 
frequency: 

( ) 0z ,t t zφ ω β φ+ += − +  
 

Now let’s set this phase to some arbitrary value of cφ  radians. 
 

0 ct zω β φ φ+− + =  
 

For every time t, there is some location z on a transmission line 
that has this phase value cφ .  That location is evidently: 
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0 ctz ω φ φ
β

++ −
=  

 
Note as time increases, so too does the location z  on the line 
where ( ) cz ,tφ φ+ = . 
 
The velocity vp  at which this phase point moves down the line 
can be determined as: 

0 c

p

td
dzv
dt dt

ω φ φ
β ω

β

+⎛ ⎞+ −
⎜ ⎟
⎝ ⎠= = =  

 
This wave velocity is the velocity of the propagating wave! 
 
Note that the value: 

2 2
pv

fω β ω
λ β π π

= = =  

 
and thus we can conclude that: 
 

pv f λ=  
 

as well as: 

pv
ωβ =  

 
Q:  But these results were derived for the ( )V z+  wave; what 
about the other wave ( ( )V z− )? 
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A:  The results are essentially the same, as each wave depends 
on the same value β. 
 
The only subtle difference comes when we evaluate the phase 
velocity.  For the wave ( )V z− , we find: 
 

( ) 0z ,t t zφ ω β φ− −= ++  
 

Note the plus sign associated with βz ! 
 
We thus find that some arbitrary phase value will be located at 
location: 

0 c tz φ φ ω
β

−− + −
=  

 
Note now that an increasing time will result in a decreasing 
value of position z .  In other words this wave is propagating in 
the direction of decreasing position z—in the opposite direction 
of the ( )V z+  wave!  
 
This is further verified by the derivative:  
 

0 c

p

td
dzv
dt dt

φ φ ω
β ω

β

−⎛ ⎞− + −
⎜ ⎟
⎝ ⎠= = = −  

 
Where the minus sign merely means that the wave propagates in 
the –z direction.  Otherwise, the wavelength and velocity of the 
two waves are precisely the same!  
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Line Impedance  
 
Now let’s define line impedance ( )Z z , a complex function 
which is simply the ratio of the complex line voltage and 
complex line current: 
 
 

( ) ( )
( )

V zZ z
I z

=  

 
 
 

 
 
 
 
 
A: NO!  The line impedance ( )Z z  is (generally speaking) 
NOT the transmission line characteristic impedance Z0 !!! 
 

 It is unfathomably important that you understand 
this!!!! 

 
To see why, recall that: 
 
 

( ) ( ) ( )V z V z V z+ −= +  

 

Q:  Hey! I know what this is! The 
ratio of the voltage to current is 
simply the characteristic 
impedance Z0, right ??? 



 

8/22/2007 Line Impedance 2/3 

Jim Stiles The Univ. of Kansas Dept. of EECS 

And that: 

( ) ( ) ( )
0

V z V zI z
Z

+ −−
=  

Therefore: 
 
 

( ) ( )
( )

( ) ( )
( ) ( )0 0

V z V z V zZ z Z Z
I z V z V z

+ −

+ −

⎛ ⎞+
= = ≠⎜ ⎟−⎝ ⎠

 

 
 
Or, more specifically, we can write: 
 

( ) 0 0
0

0 0

j z j z

j z j z
V e V eZ z Z
V e V e

− ++ −

− ++ −

⎛ ⎞+
= ⎜ ⎟−⎝ ⎠

β β

β β  

 
 
 
 
 
 
 
A:  Yes! That is true! The ratio of the voltage to current for 
each of the two propagating waves is 0Z± .  However, the ratio 
of the sum of the two voltages to the sum of the two currents 
is not equal to Z0  (generally speaking)! 
 
This is actually confirmed by the equation above.  Say that 

( ) 0V z− = , so that only one wave ( ( )V z+ ) is propagating on 
the line. 

 

Q:  I’m confused!  Isn’t: 
 

( ) ( ) 0V z I z Z+ + =  ??? 
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In this case, the ratio of the total voltage to the total 
current is simply the ratio of the voltage and current of the 
one remaining wave—the characteristic impedance Z0 ! 
 

( ) ( )
( )

( )
( )

( )
( )

( )0 0 (when 0)V z V z V zZ z Z Z V z
I z V z I z

+ +
−

+ +

⎛ ⎞
= = = = =⎜ ⎟

⎝ ⎠
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A:  Exactly!  Moreover, note that characteristic impedance Z0 

is simply a number, whereas line impedance ( )Z z  is a function 
of position (z )  on the transmission line. 

 

Q:  So, it appears to me that characteristic 
impedance Z0 is a transmission line 
parameter, depending only on the 
transmission line values L and C. 
 
Whereas line impedance is ( )Z z  depends 
the magnitude and phase of the two 
propagating waves ( )V z+  and ( )V z− --values 
that depend not only on the transmission 
line, but also on the two things attached to 
either end of the transmission line!   
 
Right !? 
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The Reflection Coefficient 
 
So, we know that the transmission line voltage ( )V z and the 
transmission line current ( )I z  can be related by the line 
impedance ( )Z z : 
 

( ) ( ) ( )V z Z z I z=  
 
or equivalently: 

( ) ( )
( )

V zI z
Z z

=  

 
 
 
 
 
 
 
 
 
 
 
Expressing the “activity” on a transmission line in terms of 
voltage, current and impedance is of course perfectly valid. 
 
However, let us look closer at the expression for each of 
these quantities: 
 

Q:  Piece of cake! I fully 
understand the concepts of 
voltage, current and impedance 
from my circuits classes.  Let’s 
move on to something more 
important (or, at the very least, 
more interesting). 
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( ) ( ) ( )V z V z V z+ −= +  
 
 

( ) ( ) ( )
0

V z V zI z
Z

+ −−
=  

 
 

( ) ( ) ( )
( ) ( )0

V z V zZ z Z
V z V z

+ −

+ −

⎛ ⎞+
= ⎜ ⎟−⎝ ⎠

 

 
It is evident that we can alternatively express all “activity” on 
the transmission line in terms of the two transmission line 
waves ( )V z+  and ( )V z− .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( ) 0
j zV z V e β+− −

+

=
−

 

z 

( ) 0
j zV z V e β−+ +

+

=
−

 

Q: I know ( )V z  and ( )I z  are related 
by line impedance ( )Z z : 
 

( ) ( )
( )

V zZ z
I z

=  

 
But how are ( )V z+  and ( )V z−  related? 
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A: Similar to line impedance, we can define a new parameter—
the reflection coefficient ( )zΓ —as the ratio of the two 
quantities: 
 

( ) ( )
( )

( ) ( ) ( )V zz V z z V z
V z

−
− +

+Γ = Γ⇒  

 
  

More specifically, we can express ( )zΓ  as: 
 

( ) 20 0

0 0

j z
j z

j z
V e Vz e
V e V

β
β

β

+− −
+

−+ +Γ = =  

 
Note then, the value of the reflection coefficient at z =0 is: 
 

( ) ( )
( )

( )2 0 0

0 0

0
0

0
jV z Vz e

V z V
β

− −
+

+ +

=
Γ = = =

=
 

 
We define this value as 0Γ , where: 
 
 

( ) 0
0

0

0 Vz
V

−

+Γ Γ = =  

 
 

Note then that we can alternatively write ( )zΓ  as: 
 

( ) 2
0

j zz e β+Γ = Γ  
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Based on your circuits experience, you 
might well be tempted to always use 
the first relationship. However, we will 
find it useful (as well as simple) indeed 
to describe activity on a transmission 
line in terms of the second 
relationship—in terms of the two 
propagating transmission line waves! 

So now we have two different but equivalent ways to describe 
transmission line activity! 
 
We can use (total) voltage and current, related by line 
impedance: 
 
 

( ) ( )
( )

( ) ( ) ( )V zZ z V z Z z I z
I z

= ∴ =  

 
 
Or, we can use the two propagating voltage waves, related by 
the reflection coefficient: 
 
 

( ) ( )
( )

( ) ( ) ( )V zz V z z V z
V z

−
− +

+Γ = ∴ = Γ  

 
 
These are equivalent relationships—we can use either when 
describing a transmission line.   
 
 
 

 


