B. The Terminated, Lossless Transmission Line

We now know that a lossless transmission line is completely characterized by real constants Z_{0} and β.

Likewise, the 2 waves propagating on a transmission line are completely characterized by complex constants V_{0}^{+}and V_{0}^{-}.

Q: Z_{0} and β are determined from L, C, and ω. How do we find V_{0}^{+}and V_{0}^{-}?

A: Apply Boundary Conditions!

Every transmission line has 2 "boundaries"

1) At one end of the transmission line.
2) At the other end of the transmission line!

Typically, there is a source at one end of the line, and a load at the other.
\rightarrow The purpose of the transmission line is to get power from the source, to the load!

Let's apply the load boundary condition!
HO: The Terminated, Lossless Transmission Line

HO: Special Values of Load Impedance

Q: So the line impedance at the end of a line must be load impedance Z_{L} (i.e., $Z\left(z=z_{L}\right)=Z_{L}$); what is the line impedance at the beginning of the line (i.e.,
$Z\left(z=z_{L}-\ell\right)=$? ? ?

A: The input impedance!

HO: Transmission Line Input Impedance

Q: You said the purpose of the transmission line is to transfer E.M. energy from the source to the load. Exactly how much power is flowing in the transmission line, and how much is delivered to the load?

A: HO: Power Flow and Return Loss

Note that we can specify a load with:

1) its impedance Z_{L}
2) its reflection coefficient Γ_{L}
3) return loss

A fourth alternative is VSWR.

HO: VSWR

The Terminated, Lossless Transmission Line

Now let's attach something to our transmission line. Consider a lossless line, length ℓ, terminated with a load Z_{L}.

Q: What is the current and voltage at each and every point on the transmission line (i.e., what is $I(z)$ and $V(z)$ for all points z where $z_{L}-\ell \leq z \leq z_{L}$?)?

A: To find out, we must apply boundary conditions!
In other words, at the end of the transmission line $\left(z=z_{L}\right)$ where the load is attached-we have many requirements that all must be satisfied!

1. To begin with, the voltage and current $\left(I\left(z=z_{L}\right)\right.$ and $V\left(z=z_{L}\right)$) must be consistent with a valid transmission line solution:

$$
\begin{aligned}
V\left(z=z_{L}\right) & =V^{+}\left(z=z_{L}\right)+V^{-}\left(z=z_{L}\right) \\
& =V_{0}^{+} e^{-j \beta z_{L}}+V_{0}^{-} e^{+j \beta z_{L}} \\
I\left(z=z_{L}\right) & =\frac{V_{0}^{+}\left(z=z_{L}\right)}{Z_{0}}-\frac{V_{0}^{-}\left(z=z_{L}\right)}{Z_{0}} \\
& =\frac{V_{0}^{+}}{Z_{0}} e^{-j \beta z_{L}}-\frac{V_{0}^{-}}{Z_{0}} e^{+j \beta z_{L}}
\end{aligned}
$$

2. Likewise, the load voltage and current must be related by Ohm's law:

$$
V_{L}=Z_{L} I_{L}
$$

3. Most importantly, we recognize that the values $I\left(z=z_{L}\right)$, $V\left(z=z_{L}\right)$ and I_{L}, V_{L} are not independent, but in fact are strictly related by Kirchoff's Laws!

From KVL and KCL we find these requirements:

$$
\begin{aligned}
& V\left(z=z_{L}\right)=V_{L} \\
& I\left(z=z_{L}\right)=I_{L}
\end{aligned}
$$

Combining these equations and boundary conditions, we find that:

$$
\begin{gathered}
V_{L}=Z_{L} I_{L} \\
V\left(z=z_{L}\right)=Z_{L} I\left(z=z_{L}\right) \\
V^{+}\left(z=z_{L}\right)+V^{-}\left(z=z_{L}\right)=\frac{Z_{L}}{Z_{0}}\left(V^{+}\left(z=z_{L}\right)-V^{-}\left(z=z_{L}\right)\right)
\end{gathered}
$$

Rearranging, we can conclude:

$$
\frac{V^{-}\left(z=z_{L}\right)}{V^{+}\left(z=Z_{L}\right)}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}
$$

Q: Hey wait as second! We earlier defined $V^{-}(z) / V^{+}(z)$ as reflection coefficient $\Gamma(z)$. How does this relate to the expression above?

A: Recall that $\Gamma(z)$ is a function of transmission line position z. The value $V^{-}\left(z=z_{L}\right) / V^{+}\left(z=z_{L}\right)$ is simply the value of function $\Gamma(z)$ evaluated at $z=z_{L}$ (i.e., evaluated at the end of the line):

$$
\frac{V^{-}\left(z=z_{L}\right)}{V^{+}\left(z=z_{L}\right)}=\Gamma\left(z=z_{L}\right)=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}
$$

This value is of fundamental importance for the terminated transmission line problem, so we provide it with its own special symbol (Γ_{L})!

$$
\Gamma_{L} \doteq \Gamma\left(z=z_{L}\right)=\frac{Z_{L}-z_{0}}{Z_{L}+Z_{0}}
$$

Q: Wait! We earlier determined that:

$$
\Gamma(z)=\frac{Z(z)-Z_{0}}{Z(z)+Z_{0}}
$$

so it would seem that:

$$
\Gamma_{L}=\Gamma\left(z=z_{L}\right)=\frac{Z\left(z=z_{L}\right)-Z_{0}}{Z\left(z=z_{L}\right)+Z_{0}}
$$

Which expression is correct??
A: They both are! It is evident that the two expressions:

$$
\Gamma_{L}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}} \quad \text { and } \quad \Gamma_{L}=\frac{Z\left(z=z_{L}\right)-Z_{0}}{Z\left(z=z_{L}\right)+Z_{0}}
$$

are equal if:

$$
Z\left(z=z_{L}\right)=Z_{L}
$$

And since we know that from Ohm's Law:

$$
Z_{L}=\frac{V_{L}}{I_{L}}
$$

and from Kirchoff's Laws:

$$
\frac{V_{L}}{I_{L}}=\frac{V\left(z=z_{L}\right)}{I\left(z=z_{L}\right)}
$$

and that line impedance is:

$$
\frac{V\left(z=z_{L}\right)}{I\left(z=z_{L}\right)}=Z\left(z=z_{L}\right)
$$

we find it apparent that the line impedance at the end of the transmission line is equal to the load impedance:

$$
Z\left(z=z_{L}\right)=Z_{L}
$$

The above expression is essentially another expression of the boundary condition applied at the end of the transmission line.

Q: I'm confused! Just what are were we trying to accomplish in this handout?

A: We are trying to find $K(z)$ and $I(z)$ when a lossless transmission line is terminated by a load Z_{L} !

We can now determine the value of V_{0}^{-}in terms of V_{0}^{+}. Since:

$$
\Gamma_{L}=\frac{V^{-}\left(\boldsymbol{z}=\boldsymbol{z}_{L}\right)}{V^{+}\left(\boldsymbol{z}=\boldsymbol{z}_{L}\right)}=\frac{\boldsymbol{V}_{0}^{-} e^{+j \beta z_{L}}}{V_{0}^{+} e^{-j \beta z_{L}}}
$$

We find:

$$
V_{0}^{-}=e^{-2 j \beta z_{L}} \Gamma_{L} V_{0}^{+}
$$

And therefore we find:

$$
\begin{gathered}
V^{-}(z)=\left(e^{-2 j \beta z_{L}} \Gamma_{L} V_{0}^{+}\right) e^{+j \beta z} \\
V(z)=V_{0}^{+}\left[e^{-j \beta z}+\left(e^{-2 j \beta z_{L}} \Gamma_{L}\right) e^{+j \beta z}\right] \\
I(z)=\frac{V_{0}^{+}}{Z_{0}}\left[e^{-j \beta z}-\left(e^{-2 j \beta z_{L}} \Gamma_{L}\right) e^{+j \beta z}\right]
\end{gathered}
$$

where:

$$
\Gamma_{L}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}
$$

$z_{L}=0$

Now, we can further simplify our analysis by arbitrarily assigning the end point z_{L} a zero value (i.e., $z_{L}=0$):

If the load is located at $z=0$ (i.e., if $z_{L}=0$), we find that:

$$
\begin{aligned}
& V(z=0)=V^{+}(z=0)+V^{-}(z=0) \\
& \\
& =V_{0}^{+} e^{-j \beta(0)}+V_{0}^{-} e^{+j \beta(0)} \\
& \\
& =V_{0}^{+}+V_{0}^{-} \\
& I(z=0)
\end{aligned}=\frac{V_{0}^{+}(z=0)}{Z_{0}}-\frac{V_{0}^{-}(z=0)}{Z_{0}}, \begin{aligned}
& Z_{0}^{+} e^{-j \beta(0)}-\frac{V_{0}^{-}}{Z_{0}} e^{+j \beta(0)} \\
&=\frac{V_{0}^{+}-V_{0}^{-}}{Z_{0}} \\
& Z(z=0)=Z_{0}\left(\frac{V_{0}^{+}+V_{0}^{-}}{V_{0}^{+}-V_{0}^{-}}\right)
\end{aligned}
$$

Likewise, it is apparent that if $z_{L}=0, \Gamma_{L}$ and Γ_{0} are the same:

$$
\Gamma_{L}=\Gamma\left(z=z_{L}\right)=\frac{V^{-}(z=0)}{V^{+}(z=0)}=\frac{V_{0}^{-}}{V_{0}^{+}}=\Gamma_{0}
$$

Therefore:

$$
\Gamma_{L}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}=\Gamma_{0}
$$

Thus, we can write the line current and voltage simply as:

$$
\begin{array}{ll}
V(z)=V_{0}^{+}\left[e^{-j \beta z}+\Gamma_{0} e^{+j \beta z}\right] & {\left[\text { for } z_{L}=0\right]} \\
I(z)=\frac{V_{0}^{+}}{Z_{0}}\left[e^{-j \beta z}-\Gamma_{0} e^{+j \beta z}\right] &
\end{array}
$$

Q: But, how do we determine V_{0}^{+}??

A: We require a second boundary condition to determine V_{0}^{+}. The only boundary left is at the other end of the transmission line. Typically, a source of some sort is located there. This makes physical sense, as something must generate the incident wave!

Special Values of

Load Impedance

It's interesting to note that the load Z_{L} enforces a boundary condition that explicitly determines neither $K(z)$ nor $I(z)$-but completely specifies line impedance $Z(z)$!

$$
\begin{aligned}
& Z(z)=Z_{0} \frac{e^{-j \beta z}+\Gamma_{L} e^{+j \beta z}}{e^{-j \beta z}-\Gamma_{L} e^{+j \beta z}}=Z_{0} \frac{Z_{L} \cos \beta z-j Z_{0} \sin \beta z}{Z_{0} \cos \beta z-j Z_{L} \sin \beta z} \\
& \Gamma(z)=\Gamma_{L} e^{+j 2 \beta z}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}} e^{+j 2 \beta z}
\end{aligned}
$$

Likewise, the load boundary condition leaves $V^{+}(z)$ and $V^{-}(z)$ undetermined, but completely determines reflection coefficient function $\Gamma(z)$!

Let's look at some specific values of load impedance $Z_{L}=R_{L}+j X_{L}$ and see what functions $Z(z)$ and $\Gamma(z)$ result!

1. $Z_{L}=Z_{0}$

In this case, the load impedance is numerically equal to the characteristic impedance of the transmission line. Assuming the line is lossless, then Z_{0} is real, and thus:

$$
R_{L}=Z_{0} \quad \text { and } \quad X_{L}=0
$$

It is evident that the resulting load reflection coefficient is zero:

$$
\Gamma_{L}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}=\frac{Z_{0}-Z_{0}}{Z_{0}+Z_{0}}=0
$$

This result is very interesting, as it means that there is no reflected wave $V^{-}(z)$!

Thus, the total voltage and current along the transmission line is simply voltage and current of the incident wave:

$$
\begin{aligned}
& V(z)=V^{+}(z)=V_{0}^{+} e^{-j \beta z} \\
& I(z)=I^{+}(z)=\frac{V_{0}^{+}}{Z_{0}} e^{-j \beta z}
\end{aligned}
$$

Meaning that the line impedance is likewise numerically equal to the characteristic impedance of the transmission line for all line position z.

$$
Z(z)=\frac{V(z)}{I(z)}=Z_{0} \frac{V_{0}^{+} e^{-j \beta z}}{V_{0}^{+} e^{-j \beta z}}=Z_{0}
$$

And likewise, the reflection coefficient is zero at all points along the line:

$$
\Gamma(z)=\frac{V^{-}(z)}{V^{+}(z)}=\frac{0}{V^{+}(z)}=0
$$

We call this condition (when $Z_{L}=Z_{0}$) the matched condition, and the load $Z_{L}=Z_{0}$ a matched load.
2. $Z_{L}=j X_{L}$

For this case, the load impedance is purely reactive (e.g. a capacitor of inductor), the real (resistive) portion of the load is zero:

$$
R_{L}=0
$$

The resulting load reflection coefficient is:

$$
\Gamma_{L}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}=\frac{j X_{L}-Z_{0}}{j X_{L}+Z_{0}}
$$

Given that Z_{0} is real (i.e., the line is lossless), we find that this load reflection coefficient is generally some complex number.

We can rewrite this value explicitly in terms of its real and imaginary part as:

$$
\Gamma_{L}=\frac{j X_{L}-Z_{0}}{j X_{L}+Z_{0}}=\left(\frac{X_{L}^{2}-Z_{0}^{2}}{X_{L}^{2}+Z_{0}^{2}}\right)+j\left(\frac{2 Z_{0} X_{L}}{X_{L}^{2}+Z_{0}^{2}}\right)
$$

Yuck! This isn't much help!

et's instead write this complex value Γ_{L} in terms of its magnitude and phase. For magnitude we find a much more straightforward result!

$$
\left|\Gamma_{L}\right|^{2}=\frac{\left|j X_{L}-Z_{0}\right|^{2}}{\left|j X_{L}+Z_{0}\right|^{2}}=\frac{X_{L}^{2}+Z_{0}^{2}}{X_{L}^{2}+Z_{0}^{2}}=1
$$

Its magnitude is one! Thus, we find that for reactive loads, the reflection coefficient can be simply expressed as:

$$
\Gamma_{L}=e^{j \theta_{T}}
$$

where

$$
\theta_{\Gamma}=\tan ^{-1}\left[\frac{2 Z_{0} X_{L}}{X_{L}^{2}-Z_{0}^{2}}\right]
$$

We can therefore conclude that for a reactive load:

$$
V_{0}^{-}=e^{j \theta_{\tau}} V_{0}^{+}
$$

As a result, the total voltage and current along the transmission line is simply (assuming $z_{L}=0$):

$$
\begin{aligned}
V(z) & =V_{0}^{+}\left(e^{-j \beta z}+e^{+j \theta_{L}} e^{+j \beta z}\right) \\
& =V_{0}^{+} e^{+j \theta_{\Gamma} / 2}\left(e^{-j\left(\beta z+\theta_{\Gamma} / 2\right)}+e^{+j\left(\beta z+\theta_{\Gamma} / 2\right)}\right) \\
& =2 V_{0}^{+} e^{+j \theta_{\Gamma} / 2} \cos \left(\beta z+\theta_{\Gamma} / 2\right)
\end{aligned}
$$

$$
\begin{aligned}
I(z) & =\frac{V_{0}^{+}}{Z_{0}}\left(e^{-j \beta z}-e^{+j \beta z}\right) \\
& =\frac{V_{0}^{+}}{Z_{0}} e^{+j \theta_{L} / 2}\left(e^{-j\left(\beta z+\theta_{L} / 2\right)}-e^{+j\left(\beta z+\theta_{L} / 2\right)}\right) \\
& =-j \frac{2 V_{0}^{+}}{Z_{0}} e^{+j \theta_{L} / 2} \sin \left(\beta z+\theta_{L} / 2\right)
\end{aligned}
$$

Meaning that the line impedance can be written in terms of a trigonometric function:

$$
Z(z)=\frac{V(z)}{I(z)}=j Z_{0} \cot \left(\beta z+\theta_{\Gamma} / 2\right)
$$

Note that this impedance is purely reactive $-V(z)$ and $I(z)$ are 90° out of phase!

Finally, the reflection coefficient function is:

$$
\Gamma(z)=\frac{V^{-}(z)}{V^{+}(z)}=\frac{V_{0}^{+} e^{+j \theta_{\mathrm{T}}} e^{+j \beta z}}{V_{0}^{+} e^{-j \beta z}}=e^{+j 2\left(\beta z+\theta_{\Gamma} / 2\right)}
$$

Meaning that for purely reactive loads:

$$
|\Gamma(z)|=\left|e^{+j 2\left(\beta z+\theta_{\Gamma} / 2\right)}\right|=1
$$

In other words, the magnitude reflection coefficient function is equal to one-at each and every point on the transmission line.
3. $Z_{L}=R_{L}$

For this case, the load impedance is purely real (e.g. a resistor), and thus there is no reactive component:

$$
X_{L}=0
$$

The resulting load reflection coefficient is:

$$
\Gamma_{L}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}=\frac{R-Z_{0}}{R+Z_{0}}
$$

Given that Z_{0} is real (i.e., the line is lossless), we find that this load reflection coefficient must be a purely real value! In other words:

$$
\operatorname{Re}\left\{\Gamma_{L}\right\}=\frac{R-Z_{0}}{R+Z_{0}} \quad \operatorname{Im}\left\{\Gamma_{L}\right\}=0
$$

So a real-valued load Z_{L} results in a real valued load reflection coefficient G_{L}.

Now let's consider the line impedance $Z(z)$ and reflection coefficient function $\Gamma(z)$.

Q: I bet I know the answer to this one! We know that a purely imaginary (i.e., reactive) load results in a purely reactive line impedance.

Thus, a purely real (i.e., resistive) load will result in a purely resistive line impedance, right??

A: NOPE! The line impedance resulting from a real load is complex-it has both real and imaginary components!

Thus the line impedance, as well as reflection coefficient function, cannot be further simplified for the case where $Z_{L}=R_{L}$.

Q: Why is that?

A: Remember, a lossless transmission line has series inductance and shunt capacitance only. In other words, a length of lossless transmission line is a purely reactive device (it absorbs no energy!).

* If we attach a purely reactive load at the end of the transmission line, we still have a completely reactive system (load and transmission line). Because this system has no resistive (i.e., real) component, the general expressions for line impedance, line voltage, etc. can be significantly simplified.
* However, if we attach a purely real load to our reactive transmission line, we now have a complex system, with both real and imaginary (i.e., resistive and reactive) components. This complex case is exactly what our general expressions already describes-no further simplification is possible!

$$
\text { 4. } Z_{L}=R_{L}+j X_{L}
$$

Now, let's look at the general case, where the load has both a real (resitive) and imaginary (reactive) component.

Q: Haven't we already determined all the general expressions (e.g., $\Gamma_{L}, V(z), I(z), Z(z), \Gamma(z)$) for this general case? Is there anything else left to be determined?

A: There is one last thing we need to discuss. It seems trivial, but its ramifications are very important!

For you see, the "general" case is not, in reality, quite so general. Although the reactive component of the load can be either positive or negative ($-\infty<X_{L}<\infty$), the resistive component of a passive load must be positive ($R_{L}>0$)-there's no such thing as negative resistor!

This leads to one very important and useful result. Consider the load reflection coefficient:

$$
\begin{aligned}
\Gamma_{L} & =\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}} \\
& =\frac{\left(R_{L}+j X_{L}\right)-Z_{0}}{\left(R_{L}+j X_{L}\right)+Z_{0}} \\
& =\frac{\left(R_{L}-Z_{0}\right)+j X_{L}}{\left(R_{L}+Z_{0}\right)+j X_{L}}
\end{aligned}
$$

Now let's look at the magnitude of this value:

$$
\begin{aligned}
\left|\Gamma_{L}\right|^{2} & =\left|\frac{\left(R_{L}-Z_{0}\right)+j X_{L}}{\left(R_{L}+Z_{0}\right)+j X_{L}}\right|^{2} \\
& =\frac{\left(R_{L}-Z_{0}\right)^{2}+X_{L}^{2}}{\left(R_{L}+Z_{0}\right)^{2}+X_{L}^{2}} \\
& =\frac{\left(R_{L}^{2}-2 R_{L} Z_{0}+Z_{0}^{2}\right)+X_{L}^{2}}{\left(R_{L}^{2}+2 R_{L} Z_{0}+Z_{0}^{2}\right)+X_{L}^{2}} \\
& =\frac{\left(R_{L}^{2}+Z_{0}^{2}+X_{L}^{2}\right)-2 R_{L} Z_{0}}{\left(R_{L}^{2}+Z_{0}^{2}+X_{L}^{2}\right)+2 R_{L} Z_{0}}
\end{aligned}
$$

It is apparent that since both R_{L} and Z_{0} are positive, the numerator of the above expression must be less than (or equal to) the denominator of the above expression.
\rightarrow In other words, the magnitude of the load reflection coefficient is always less than or equal to one!

$$
\left|\Gamma_{L}\right| \leq 1 \quad\left(\text { for } R_{L} \geq 0\right)
$$

Moreover, we find that this means the reflection coefficient function likewise always has a magnitude less than or equal to one, for all values of position z.

$$
|\Gamma(z)| \leq 1 \quad \text { (for all } z)
$$

Which means, of course, that the reflected wave will always have a magnitude less than that of the incident wave magnitude:

$$
\left|V^{-}(z)\right| \leq\left|V^{+}(z)\right| \quad \text { (for all } z \text {) }
$$

We will find out later that this result is consistent with conservation of energy-the reflected wave from a passive load cannot be larger than the wave incident on it.

Transmission Line
 Input Impedance

Consider a lossless line, length ℓ, terminated with a load Z_{L}.

Let's determine the input impedance of this line!

Q: Just what do you mean by input impedance?

A: The input impedance is simply the line impedance seen at the beginning $(z=-\ell)$ of the transmission line, i.e.:

$$
Z_{\text {in }}=Z(z=-\ell)=\frac{V(z=-\ell)}{I(z=-\ell)}
$$

Note $Z_{\text {in }}$ equal to neither the load impedance Z_{L} nor the characteristic impedance Z_{0} !

$$
Z_{\text {in }} \neq Z_{L} \quad \text { and } \quad Z_{\text {in }} \neq Z_{0}
$$

To determine exactly what $Z_{\text {in }}$ is, we first must determine the voltage and current at the beginning of the transmission line ($z=-\ell$).

$$
\begin{aligned}
& V(z=-\ell)=V_{0}^{+}\left[e^{+j \beta \ell}+\Gamma_{L} e^{-j \beta \ell}\right] \\
& I(z=-\ell)=\frac{V_{0}^{+}}{Z_{0}}\left[e^{+j \beta \ell}-\Gamma_{L} e^{-j \beta \ell}\right]
\end{aligned}
$$

Therefore:

$$
Z_{i n}=\frac{V(z=-\ell)}{I(z=-\ell)}=Z_{0}\left(\frac{e^{+j \beta \ell}+\Gamma_{L} e^{-j \beta \ell}}{e^{+j \beta \ell}-\Gamma_{L} e^{-j \beta \ell}}\right)
$$

We can explicitly write $Z_{\text {in }}$ in terms of load Z_{L} using the previously determined relationship:

$$
\Gamma_{L}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}
$$

Combining these two expressions, we get:

$$
\begin{aligned}
Z_{\text {in }} & =Z_{0} \frac{\left(Z_{L}+Z_{0}\right) e^{+j \beta \ell}+\left(Z_{L}-Z_{0}\right) e^{-j \beta \ell}}{\left(Z_{L}+Z_{0}\right) e^{+j \beta \ell}-\left(Z_{L}-Z_{0}\right) e^{-j \beta \ell}} \\
& =Z_{0}\left(\frac{Z_{L}\left(e^{+j \beta \ell}+e^{-j \beta \ell}\right)+Z_{0}\left(e^{+j \beta \ell}-e^{-j \beta \ell}\right)}{Z_{L}\left(e^{+j \beta \ell}+e^{-j \beta \ell}\right)-Z_{0}\left(e^{+j \beta \ell}-e^{-j \beta \ell}\right)}\right)
\end{aligned}
$$

Now, recall Euler's equations:

$$
\begin{aligned}
& e^{+j \beta \ell}=\cos \beta \ell+j \sin \beta \ell \\
& e^{-j \beta \ell}=\cos \beta \ell-j \sin \beta \ell
\end{aligned}
$$

Using Euler's relationships, we can likewise write the input impedance without the complex exponentials:

$$
\begin{aligned}
Z_{\text {in }} & =Z_{0}\left(\frac{Z_{L} \cos \beta \ell+j Z_{0} \sin \beta \ell}{Z_{0} \cos \beta \ell+j Z_{L} \sin \beta \ell}\right) \\
& =Z_{0}\left(\frac{Z_{L}+j Z_{0} \tan \beta \ell}{Z_{0}+j Z_{L} \tan \beta \ell}\right)
\end{aligned}
$$

Note that depending on the values of β, Z_{0} and ℓ, the input impedance can be radically different from the load impedance Z_{L} !

Special Cases

Now let's look at the $Z_{\text {in }}$ for some important load impedances and line lengths.
\rightarrow You should commit these results to memory!

1. $\ell=\lambda / 2$

If the length of the transmission line is exactly one-half wavelength ($\ell=\lambda / 2$), we find that:

$$
\beta \ell=\frac{2 \pi}{\lambda} \frac{\lambda}{2}=\pi
$$

meaning that:

$$
\cos \beta \ell=\cos \pi=-1 \quad \text { and } \quad \sin \beta \ell=\sin \pi=0
$$

and therefore:

$$
\begin{aligned}
Z_{\text {in }} & =Z_{0}\left(\frac{Z_{L} \cos \beta \ell+j Z_{0} \sin \beta \ell}{Z_{0} \cos \beta \ell+j Z_{L} \sin \beta \ell}\right) \\
& =Z_{0}\left(\frac{Z_{L}(-1)+j Z_{L}(0)}{Z_{0}(-1)+j Z_{L}(0)}\right) \\
& =Z_{L}
\end{aligned}
$$

In other words, if the transmission line is precisely one-half wavelength long, the input impedance is equal to the load impedance, regardless of Z_{0} or β.

2. $\ell=\lambda / 4$

If the length of the transmission line is exactly one-quarter wavelength $(\ell=\lambda / 4)$, we find that:

$$
\beta \ell=\frac{2 \pi}{\lambda} \frac{\lambda}{4}=\frac{\pi}{2}
$$

meaning that:

$$
\cos \beta \ell=\cos \pi / 2=0 \quad \text { and } \quad \sin \beta \ell=\sin \pi / 2=1
$$

and therefore:

$$
\begin{aligned}
Z_{\text {in }} & =Z_{0}\left(\frac{Z_{L} \cos \beta \ell+j Z_{0} \sin \beta \ell}{Z_{0} \cos \beta \ell+j Z_{L} \sin \beta \ell}\right) \\
& =Z_{0}\left(\frac{Z_{L}(0)+j Z_{0}(1)}{Z_{0}(0)+j Z_{L}(1)}\right) \\
& =\frac{\left(Z_{0}\right)^{2}}{Z_{L}}
\end{aligned}
$$

In other words, if the transmission line is precisely one-quarter wavelength long, the input impedance is inversely proportional to the load impedance.

Think about what this means! Say the load impedance is a short circuit, such that $Z_{L}=0$. The input impedance at beginning of the $\lambda / 4$ transmission line is therefore:

$$
Z_{\text {in }}=\frac{\left(Z_{0}\right)^{2}}{Z_{L}}=\frac{\left(Z_{0}\right)^{2}}{0}=\infty
$$

$Z_{\text {in }}=\infty!$ This is an open circuit! The quarter-wave transmission line transforms a short-circuit into an open-circuit-and vice versa!

3. $Z_{L}=Z_{0}$

If the load is numerically equal to the characteristic impedance of the transmission line (a real value), we find that the input impedance becomes:

$$
\begin{aligned}
Z_{i n} & =Z_{0}\left(\frac{Z_{L} \cos \beta \ell+j Z_{0} \sin \beta \ell}{Z_{0} \cos \beta \ell+j Z_{L} \sin \beta \ell}\right) \\
& =Z_{0}\left(\frac{Z_{0} \cos \beta \ell+j Z_{0} \sin \beta \ell}{Z_{0} \cos \beta \ell+j Z_{0} \sin \beta \ell}\right) \\
& =Z_{0}
\end{aligned}
$$

In other words, if the load impedance is equal to the transmission line characteristic impedance, the input impedance will be likewise be equal to Z_{0} regardless of the transmission line length ℓ.

4. $Z_{L}=j X_{L}$

If the load is purely reactive (i.e., the resistive component is zero), the input impedance is:

$$
\begin{aligned}
Z_{\text {in }} & =Z_{0}\left(\frac{Z_{L} \cos \beta \ell+j Z_{0} \sin \beta \ell}{Z_{0} \cos \beta \ell+j Z_{L} \sin \beta \ell}\right) \\
& =Z_{0}\left(\frac{j X_{L} \cos \beta \ell+j Z_{0} \sin \beta \ell}{Z_{0} \cos \beta \ell+j^{2} X_{L} \sin \beta \ell}\right) \\
& =j Z_{0}\left(\frac{X_{L} \cos \beta \ell+Z_{0} \sin \beta \ell}{Z_{0} \cos \beta \ell-X_{L} \sin \beta \ell}\right)
\end{aligned}
$$

In other words, if the load is purely reactive, then the input impedance will likewise be purely reactive, regardless of the line length ℓ.

Note that the opposite is not true: even if the load is purely resistive ($Z_{L}=R$), the input impedance will be complex (both resistive and reactive components).

Q: Why is this?

A:

5. $\ell \ll \lambda$

If the transmission line is electrically small-its length ℓ is small with respect to signal wavelength λ--we find that:

$$
\beta \ell=\frac{2 \pi}{\lambda} \ell=2 \pi \frac{\ell}{\lambda} \approx 0
$$

and thus:

$$
\cos \beta \ell=\cos 0=1 \quad \text { and } \quad \sin \beta \ell=\sin 0=0
$$

so that the input impedance is:

$$
\begin{aligned}
Z_{\text {in }} & =Z_{0}\left(\frac{Z_{L} \cos \beta \ell+j Z_{0} \sin \beta \ell}{Z_{0} \cos \beta \ell+j Z_{L} \sin \beta \ell}\right) \\
& =Z_{0}\left(\frac{Z_{L}(1)+j Z_{L}(0)}{Z_{0}(1)+j Z_{L}(0)}\right) \\
& =Z_{L}
\end{aligned}
$$

In other words, if the transmission line length is much smaller than a wavelength, the input impedance $Z_{\text {in }}$ will always be equal to the load impedance Z_{L}.

This is the assumption we used in all previous circuits courses (e.g., EECS 211, 212, 312, 412)! In those courses, we assumed that the signal frequency ω is relatively low, such that the signal wavelength λ is very large $(\lambda \gg)$.

Note also for this case (the electrically short transmission line), the voltage and current at each end of the transmission line are approximately the same!

$$
V(z=-\ell) \approx V(z=0) \text { and } I(z=-\ell) \approx I(z=0) \text { if } \ell \ll \lambda
$$

If $\ell \ll \lambda$, our "wire" behaves exactly as it did in EECS 211 !

Power Flow and

Return Loss

We have discovered that two waves propagate along a transmission line, one in each direction $\left(V^{+}(z)\right.$ and $\left.V^{-}(z)\right)$.

The result is that electromagnetic energy flows along the transmission line at a given rate (i.e., power).

Q: How much power flows along a transmission line, and where does that power go?

A: We can answer that question by determining the power absorbed by the load!

The time average power absorbed by an impedance Z_{L} is:

$$
\begin{aligned}
P_{a b s} & =\frac{1}{2} \operatorname{Re}\left\{V_{L} I_{L}^{*}\right\} \\
& =\frac{1}{2} \operatorname{Re}\left\{V(z=0) I(z=0)^{*}\right\} \\
& =\frac{1}{2 Z_{0}} \operatorname{Re}\left\{\left(V_{0}^{+}\left[e^{-j \beta 0}+\Gamma_{0} e^{+j \beta 0}\right]\right)\left(V_{0}^{+}\left[e^{-j \beta 0}-\Gamma_{0} e^{+j \beta 0}\right]\right)^{*}\right\} \\
& =\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}} \operatorname{Re}\left\{1-\left(\Gamma_{0}{ }^{*}-\Gamma_{0}\right)-\left|\Gamma_{0}\right|^{2}\right\} \\
& =\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}\left(1-\left|\Gamma_{0}\right|^{2}\right)
\end{aligned}
$$

The significance of this result can be seen by rewriting the expression as:

$$
\begin{aligned}
P_{a b s} & =\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}\left(1-\left|\Gamma_{0}\right|^{2}\right) \\
& =\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}-\frac{\left|V_{0}^{+} \Gamma_{0}\right|^{2}}{2 Z_{0}} \\
& =\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}-\frac{\left|V_{0}^{-}\right|^{2}}{2 Z_{0}}
\end{aligned}
$$

The two terms in above expression have a very definite physical meaning. The first term is the time-averaged power of the wave propagating along the transmission line toward the load.

We say that this wave is incident on the load:

$$
P_{\text {inc }}=P_{+}=\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}
$$

Likewise, the second term of the $P_{a b s}$ equation describes the power of the wave moving in the other direction (away from the load). We refer to this as the wave reflected from the load:

$$
P_{\text {ref }}=P_{-}=\frac{\left|V_{0}^{-}\right|^{2}}{2 Z_{0}}=\frac{\left|\Gamma_{0}\right|^{2}\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}=\left|\Gamma_{L}\right|^{2} P_{\text {inc }}
$$

Thus, the power absorbed by the load (i.e., the power delivered to the load) is simply:

$$
P_{a b s}=P_{\text {inc }}-P_{r e f}
$$

or, rearranging, we find:

$$
P_{i n c}=P_{a b s}+P_{r e f}
$$

This equation is simply an expression of the conservation of energy!

It says that power flowing toward the load ($P_{\text {inc }}$) is either absorbed by the load ($P_{a b s}$) or reflected back from the load ($P_{\text {ref }}$).

Note that if $\left|\Gamma_{L}\right|^{2}=1$, then $P_{\text {inc }}=P_{\text {ref }}$, and therefore no power is absorbed by the load.

This of course makes sense!
The magnitude of the reflection coefficient $\left(\left|\Gamma_{L}\right|\right)$ is equal to one only when the load impedance is purely reactive (i.e., purely imaginary).

Of course, a purely reactive element (e.g., capacitor or inductor) cannot absorb any power-all the power must be reflected!

RETURN LOSS

The ratio of the reflected power to the incident power is known as return loss. Typically, return loss is expressed in dB :

$$
\text { R.L. }=-10 \log _{10}\left[\frac{P_{r e f}}{\rho_{i n c}}\right]=-10 \log _{10}\left|\Gamma_{L}\right|^{2}
$$

For example, if the return loss is 10 dB , then 10% of the incident power is reflected at the load, with the remaining 90% being absorbed by the load-we "lose" 10% of the incident power

Likewise, if the return loss is 30 dB , then 0.1% of the incident power is reflected at the load, with the remaining 99.9% being absorbed by the load-we "lose" 0.1% of the incident power.

Thus, a larger numeric value for return loss actually indicates less lost power! An ideal return loss would be $\infty \mathrm{dB}$, whereas a return loss of 0 dB indicates that $\left|\Gamma_{L}\right|=1$--the load is reactive!

VSWR

Consider again the voltage along a terminated transmission line, as a function of position z :

$$
V(z)=V_{0}^{+}\left[e^{-j \beta z}+\Gamma_{L} e^{+j \beta z}\right]
$$

Recall this is a complex function, the magnitude of which expresses the magnitude of the sinusoidal signal at position z, while the phase of the complex value represents the relative phase of the sinusoidal signal.

Let's look at the magnitude only:

$$
\begin{aligned}
|V(z)| & =\left|V_{0}^{+}\right|\left|e^{-j \beta z}+\Gamma_{L} e^{+j \beta z}\right| \\
& =\left|V_{0}^{+}\right|\left|e^{-j \beta z}\right|\left|1+\Gamma_{L} e^{+j 2 \beta z}\right| \\
& =\left|V_{0}^{+}\right|\left|1+\Gamma_{L} e^{+j 2 \beta z}\right|
\end{aligned}
$$

ICBST the largest value of $|V(z)|$ occurs at the location z where:

$$
\Gamma_{L} e^{+j 2 \beta z}=\left|\Gamma_{L}\right|+j 0
$$

while the smallest value of $\mid V(z)$ loccurs at the location z where:

$$
\Gamma_{L} e^{+j 2 \beta z}=-\left|\Gamma_{L}\right|+j 0
$$

As a result we can conclude that:

$$
\begin{aligned}
& |V(z)|_{\max }=\left|V_{0}^{+}\right|\left(1+\left|\Gamma_{L}\right|\right) \\
& |V(z)|_{\text {min }}=\left|V_{0}^{+}\right|\left(1-\left|\Gamma_{L}\right|\right)
\end{aligned}
$$

The ratio of $|V(z)|_{\max }$ to $|V(z)|_{\text {min }}$ is known as the Voltage Standing Wave Ratio (VSWR):

$$
\operatorname{VSWR} \doteq \frac{|V(z)|_{\max }}{|V(z)|_{\min }}=\frac{1+\left|\Gamma_{L}\right|}{1-\left|\Gamma_{L}\right|} \quad \therefore \quad 1 \leq V S W R \leq \infty
$$

Note if $\left|\Gamma_{L}\right|=0$ (i.e., $Z_{L}=Z_{0}$), then VSWR $=1$. We find for this case:

$$
|\boldsymbol{V}(\boldsymbol{z})|_{\max }=|\boldsymbol{V}(\boldsymbol{z})|_{\min }=\left|V_{0}^{+}\right|
$$

In other words, the voltage magnitude is a constant with respect to position z.

Conversely, if $\left|\Gamma_{L}\right|=1$ (i.e., $Z_{L}=j X$), then $V S W R=\infty$. We find for this case:

$$
|V(z)|_{\min }=0 \quad \text { and } \quad|V(z)|_{\max }=2\left|V_{0}^{+}\right|
$$

In other words, the voltage magnitude varies greatly with respect to position z.

As with return loss, VSWR is dependent on the magnitude of Γ_{L} (i.e, $\left|\Gamma_{\mathrm{L}}\right|$) only !

