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B. The Terminated, Lossless Transmission Line 
 
We now know that a lossless transmission line is completely 
characterized by real constants 0Z  and β . 
 
Likewise, the 2 waves propagating on a transmission line are 
completely characterized by complex constants 0V +  and 0V − . 
 
Q:  0Z  and β  are determined from L, C, and ω .  How do we 
find  0V +  and 0V −  ? 
 
A:  Apply Boundary Conditions! 
 
Every transmission line has 2 “boundaries” 
 

1)    At one end of the transmission line. 
2)    At the other end of the transmission line! 

 
Typically, there is a source at one end of the line, and a load 
at the other. 
 

 The purpose of the transmission line is to get power from 
the source, to the load! 
 
Let’s apply the load boundary condition! 
 
HO:  The Terminated, Lossless Transmission Line 
 
HO:  Special Values of Load Impedance 
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Q: So the line impedance at the end of a line must be load 
impedance ZL  (i.e., ( )L LZ z z Z= = );  what is the line 
impedance at the beginning of the line (i.e., 

( )LZ z z ?= − = )? 
 
A: The input impedance ! 
 
HO:  Transmission Line Input Impedance 
 
Q:  You said the purpose of the transmission line is to 
transfer E.M. energy from the source to the load.  Exactly 
how much power is flowing in the transmission line, and how 
much is delivered to the load? 
 
A:  HO: Power Flow and Return Loss 
 
Note that we can specify a load with: 
 
 1)   its impedance ZL 
 2)   its reflection coefficient LΓ  
 3)   return loss 
 
A fourth alternative is VSWR. 
 
HO: VSWR 
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The Terminated, Lossless 
Transmission Line 

 
Now let’s attach something to our transmission line. Consider a 
lossless line, length , terminated with a load ZL. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Q:  What is the current and voltage at each and every point on 
the transmission line (i.e., what is ( )I z  and ( )V z  for all points 
z where L Lz z z− ≤ ≤  ?)? 
 
A:  To find out, we must apply boundary conditions! 
 
In other words, at the end of the transmission line ( Lz z= )—
where the load is attached—we have many requirements that all 
must be satisfied!  

I(z) 

0,Z β  
+ 
V (z) 
- 

+ 
VL 
- 

 

 
ZL 
 

IL 

Lz z= −  Lz z=  
z 
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1. To begin with, the voltage and current ( ( )LI z z=  and 
( )LV z z= ) must be consistent with a valid transmission line 

solution: 
 

( ) ( ) ( )

( ) ( ) ( )

0 0

0 0

0 0

0 0

0 0

L L

L L

L L L
j z j z

L L
L

j z j z

V z z V z z V z z
V e V e

V z z V z zI z z
Z Z

V Ve e
Z Z

β β

β β

+ −

− ++ −

+ −

+ −
− +

= = = + =

= +

= =
= = −

= −

 

 
2.  Likewise, the load voltage and current must be related by 
Ohm’s law: 

L L LV Z I=  
 

3.  Most importantly, we recognize that the values ( )LI z z= , 
( )LV z z=  and IL, VL are not independent, but in fact are 

strictly related by Kirchoff’s Laws!

I(z=zL) 

0,Z β  

        + 
 
V (z=zL) 
 
        - 

+ 
 
VL 
 
- 

 
ZL 
 

IL 

Lz z= −  Lz z=  
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From KVL and KCL we find these requirements: 
 

( )

( )

L L

L L

V z z V

I z z I

= =

= =

 

 
Combining these equations and boundary conditions, we find 
that: 
 

( ) ( )

( ) ( ) ( ) ( )( )
0

L L L

L L L

L
L L L L

V Z I

V z z Z I z z

ZV z z V z z V z z V z z
Z

+ − + −

=

= = =

= + = = = − =

 

 
Rearranging, we can conclude: 
 
 

( )
( )

0

0

L L

L L

V z z Z Z
V z z Z Z

−

+

= −
=

= +
 

 
Q:  Hey wait as second! We earlier defined ( ) ( )V z V z− +  as 
reflection coefficient ( )zΓ .  How does this relate to the 
expression above? 
 
A: Recall that ( )zΓ  is a function of transmission line position z.  
The value ( ) ( )L LV z z V z z− += =  is simply the value of function 
( )zΓ  evaluated at Lz z=  (i.e., evaluated at the end of the line): 
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( )
( ) ( ) 0

0

L L
L

L L

V z z Z Zz z
V z z Z Z

−

+

= −
= Γ = =

= +
 

 
This value is of fundamental importance for the terminated 
transmission line problem, so we provide it with its own special 
symbol ( LΓ ) ! 
 

( ) 0

0

L
L L

L

Z Zz z
Z Z

−
Γ Γ = =

+
 

 
 

Q:  Wait! We earlier determined that: 
 

( ) ( )
( )

0

0

Z z Zz
Z z Z

−
Γ =

+
 

 
so it would seem that: 
 

( ) ( )
( )

0

0

L
L L

L

Z z z Zz z
Z z z Z

= −
Γ = Γ = =

= +
 

  
Which expression is correct?? 
 
A:  They both are!  It is evident that the two expressions: 
 

0

0

L
L

L

Z Z
Z Z

−
Γ =

+
       and        ( )

( )
0

0

L
L

L

Z z z Z
Z z z Z

= −
Γ =

= +
 

 
are equal if: 

( )L LZ z z Z= =  
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And since we know that from Ohm’s Law: 
 

L
L

L

VZ
I

=  

and from Kirchoff’s Laws: 
 

( )
( )

LL

L L

V z zV
I I z z

=
=

=
 

 
and that line impedance is: 
 

( )
( ) ( )L

L
L

V z z Z z z
I z z

=
= =

=
 

 
we find it apparent that the line impedance at the end of the 
transmission line is equal to the load impedance: 
 

( )L LZ z z Z= =  
 

The above expression is essentially another expression of the 
boundary condition applied at the end of the transmission line. 
 
 
 
 
 
A: We are trying to find V(z) and I(z) when a 
lossless transmission line is terminated by a 
load ZL! 

Q:  I’m confused! Just what are were we 
trying to accomplish in this handout? 
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 We can now determine the value of 0V −  in terms of 0V + . Since: 
 

( )
( )

0

0

L

L

j z
L

L j z
L

V z z V e
V z z V e

β

β

− +−

−+ +

=
Γ = =

=
 

We find: 
 

2
0 0

Lj z
LV e Vβ−− += Γ  

  
And therefore we find: 
 

( ) ( )2
0

Lj z j z
LV z e V eβ β− +− += Γ  

 
( ) ( )

( ) ( )

2
0

20

0

L

L

j z j z j z
L

j z j z j z
L

V z V e e e

VI z e e e
Z

β β β

β β β

− − ++

+
− − +

⎡ ⎤= + Γ⎣ ⎦

⎡ ⎤= − Γ⎣ ⎦

 

where: 
 

0

0

L
L

L

Z Z
Z Z

−
Γ =

+
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0Lz =  

 
Now, we can further simplify our analysis by arbitrarily 
assigning the end point zL a zero value (i.e., 0Lz = ): 
 
 
 
 
 
 
 
 
 
If the load is located at z =0 (i.e., if 0Lz = ), we find that: 
 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( )

0 0
0 0

0 0

0 0

0 00 0

0

0 0

0

0

0

0

0 0 0

0 0
0

j j

j j

V z V z V z
V e V e

V z V zI z
Z Z

V Ve e
Z

V V

V
Z

V
Z

β β

β β

+ −

− ++ −

+

+ −

+ −
− +

−

+ −

= = = + =

= +

=

= =
=

=
−

= −

+

= −

 

 

( ) 0 0
0

0 0

0 V VZ z Z
V V

+ −

+ −

⎛ ⎞+
= = ⎜ ⎟−⎝ ⎠

 

 

I(z) 

0,Z β  
+ 
V (z) 
- 

+ 
VL 
- 

 

 
ZL 
 

IL 

z = −  0z =  

z 



 

8/27/2007 The Terminated Lossless Transmission 8/8 

Jim Stiles The Univ. of Kansas Dept. of EECS 

Likewise, it is apparent that if 0Lz = , LΓ  and 0Γ  are the same: 
 

( ) ( )
( )

0
0

0

0
0L L

V z Vz z
V z V

− −

+ +

=
Γ = Γ = = = = Γ

=
 

 
Therefore: 

0
0

0

L
L

L

Z Z
Z Z

−
Γ = = Γ

+
 

 
Thus, we can write the line current and voltage simply as: 
 
 

( )

( )

0 0

0
0

0

                                                      for 0

j z j z

L

j z j z

V z V e e
z

VI z e e
Z

β β

β β

− ++

+
− +

⎡ ⎤= + Γ⎣ ⎦
=⎡ ⎤⎣ ⎦

⎡ ⎤= − Γ⎣ ⎦

 

 
 

 
Q:  But, how do we determine 0V +  ?? 
 
A: We require a second boundary condition to determine 0V + .  
The only boundary left is at the other end of the transmission 
line.  Typically, a source of some sort is located there.  This 
makes physical sense, as something must generate the incident 
wave ! 
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Special Values of 
Load Impedance 

 
It’s interesting to note that the load ZL enforces a boundary 
condition that explicitly determines neither V(z) nor I(z)—but 
completely specifies line impedance Z(z)! 
 
 

( )

( )

0
0 0

0

2 20

0

j z j z
L L

j z j z
L L

j z j zL
L

L

e e Z cos z jZ sin zZ z Z Z
e e Z cos z jZ sin z

Z Zz e e
Z Z

β β

β β

β β

β β
β β

− +

− +

+ +

+ Γ −
= =

− Γ −

−
Γ = Γ =

+

 

 
Likewise, the load boundary condition leaves ( )V z+  and ( )V z−  
undetermined, but completely determines reflection 
coefficient function ( )zΓ ! 
 
Let’s look at some specific values of load impedance 

L L LZ R jX= +  and see what functions Z(z) and ( )zΓ  result! 
 
1.  0LZ Z=  
 
In this case, the load impedance is numerically equal to the 
characteristic impedance of the transmission line.   Assuming 
the line is lossless, then Z0 is real, and thus: 
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0LR Z=       and       0LX =  

 
It is evident that the resulting load reflection coefficient is 
zero: 

0 0 0

0 0 0

0L
L

L

Z Z Z Z
Z Z Z Z

− −
Γ = = =

+ +
 

 
This result is very interesting, as it means that there is no 
reflected wave ( )V z− ! 
 
Thus, the total voltage and current along the transmission line 
is simply voltage and current of the incident wave: 
 

( ) ( )

( ) ( )

0

0

0

j z

j z

V z V z V e

VI z I z e
Z

β

β

−+ +

+
−+

= =

= =

 

 
Meaning that the line impedance is likewise numerically equal 
to the characteristic impedance of the transmission line for 
all line position z: 
 

( ) ( )
( )

0
0 0

0

j z

j z
V z V eZ z Z Z
I z V e

β

β

−+

−+= = =  

 
And likewise, the reflection coefficient is zero at all points 
along the line: 
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( ) ( )
( ) ( )

0 0V zz
V z V z

−

+ +Γ = = =  

 
We call this condition (when 0LZ Z= ) the matched condition, 
and the load 0LZ Z=  a matched load. 
 
 
2.  L LZ jX=  
 
For this case, the load impedance is purely reactive (e.g. a 
capacitor of inductor), the real (resistive) portion of the load 
is zero: 

0LR =  
 
The resulting load reflection coefficient is: 
 

00

0 0

LL
L

L L

jX ZZ Z
Z Z jX Z

−−
Γ = =

+ +
 

 
Given that Z0is real (i.e., the line is lossless), we find that this 
load reflection coefficient is generally some complex number.   
 
We can rewrite this value explicitly in terms of its real and 
imaginary part as: 
 

2 2
0 00

2 2 2 2
0 0 0

2L LL
L

L L L

jX Z Z XX Z j
jX Z X Z X Z

⎛ ⎞ ⎛ ⎞− −
Γ = = +⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠

 

 
Yuck! This isn’t much help!   
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et’s instead write this complex value LΓ  in terms of its 
magnitude and phase.  For magnitude we find a much more 
straightforward result!   
 

2 2 2
2 0 0

2 2 2
00

1L L
L

LL

jX Z X Z
X ZjX Z

− +
Γ = = =

++
 

 
Its magnitude is one! Thus, we find that for reactive loads, 
the reflection coefficient can be simply expressed as: 
 

j
L e θΓΓ =  

where 
1 0

2 2
0

2 L

L

Z Xtan
X Z

θ −
Γ

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 

 
 We can therefore conclude that for a reactive load: 
 

0 0
jV e VθΓ− +=  

 
As a result, the total voltage and current along the 
transmission line is simply (assuming 0Lz = ): 

 
 

 

( ) ( )
( ) ( )( )
( )

0

2 22
0

2
02 cos 2

Lj z j j z

j z j zj

j

V z V e e e

V e e e

V e z

β θ β

β θ β θθ

θ β θ

Γ ΓΓ

Γ

− + ++

− + + +++

++
Γ

= +

= +

= +
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( ) ( )

( ) ( )( )

( )

0

0

2 220

0

20

0

2 sin 2

L LL

L

j z j z

j z j zj

j
L

VI z e e
Z
V e e e
Z

Vj e z
Z

β β

β θ β θθ

θ β θ

+
− +

+
− + + ++

+
+

= −

= −

= − +

 

 
Meaning that the line impedance can be written in terms of a 
trigonometric function: 
 

( ) ( )
( )

( )0 cot 2V zZ z j Z z
I z

β θΓ= = +  

 
Note that this impedance is purely reactive—V(z) and I(z) are  
90  out of phase! 
 
 
Finally, the reflection coefficient function is: 
 

( ) ( )
( )

( )2 20

0

j j z
j z

j z
V z V e ez e
V z V e

θ β
β θ

β

Γ
Γ

− + ++
+ +

−+ +Γ = = =  

 
Meaning that for purely reactive loads: 
 

( ) ( )2 2 1j zz e β θΓ+ +Γ = =  

 
In other words, the magnitude reflection coefficient function 
is equal to one—at each and every point on the transmission 
line. 



 

8/27/2007 Special Values of Load Impedance 6/10 

Jim Stiles The Univ. of Kansas Dept. of EECS 

3.  L LZ R=  
 
For this case, the load impedance is purely real (e.g. a 
resistor), and thus there is no reactive component: 
 

0LX =  
 

The resulting load reflection coefficient is:  
 

0 0

0 0

L
L

L

Z Z R Z
Z Z R Z

− −
Γ = =

+ +
 

 
Given that Z0 is real (i.e., the line is lossless), we find that 
this load reflection coefficient must be a purely real value! 
In other words: 
 

{ } 0

0
L

R ZRe
R Z
−

Γ =
+

            { }Im 0LΓ =  

 
So a real-valued load ZL results in a real valued load reflection 
coefficient GL . 
 
Now let’s consider the line impedance ( )Z z  and reflection 
coefficient function ( )zΓ . 
 
Q: I bet I know the answer to this one!  We know that a 
purely imaginary (i.e., reactive) load results in a purely 
reactive line impedance.  
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Thus, a purely real (i.e., resistive) load will result in a purely 
resistive line impedance, right?? 
 
A:  NOPE!  The line impedance resulting from a real load is 
complex—it has both real and imaginary components! 
 
Thus the line impedance, as well as reflection coefficient 
function, cannot be further simplified for the case where 

L LZ R= . 
 
Q:  Why is that?   
 
A:   Remember, a lossless transmission line has series 
inductance and shunt capacitance only.  In other words, a 
length of lossless transmission line is a purely reactive device 
(it absorbs no energy!). 
 
*  If we attach a purely reactive load at the end of the 
transmission line, we still have a completely reactive system 
(load and transmission line).  Because this system has no 
resistive (i.e., real) component, the general expressions for 
line impedance, line voltage, etc. can be significantly 
simplified. 
 
*  However, if we attach a purely real load to our reactive 
transmission line, we now have a complex system, with both 
real and imaginary (i.e., resistive and reactive) components.  
This complex case is exactly what our general expressions 
already describes—no further simplification is possible! 
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4.  L L LZ R jX= +  
 
Now, let’s look at the general case, where the load has both a 
real (resitive) and imaginary (reactive) component. 
 
Q:  Haven’t we already determined all the general 
expressions (e.g., ( ) ( ) ( ) ( )L ,V z ,I z ,Z z , zΓ Γ ) for this general 
case?  Is there anything else left to be determined? 
 
 
A: There is one last thing we need to discuss.  It seems 
trivial, but its ramifications are very important! 
 
For you see, the “general” case is not, in reality, quite so 
general.  Although the reactive component of the load can be 
either positive or negative ( LX−∞ < < ∞ ), the resistive 
component of a passive load must be positive ( 0LR > )—there’s 
no such thing as negative resistor! 
 
This leads to one very important and useful result.  Consider 
the load reflection coefficient: 
 

( )
( )
( )
( )

0

0

0

0

0

0

L
L

L

L L

L L

L L

L L

Z Z
Z Z
R jX Z
R jX Z
R Z jX
R Z jX

−
Γ =

+

+ −
=

+ +

− +
=

+ +
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Now let’s look at the magnitude of this value: 
 
 

( )
( )
( )
( )
( )
( )
( )
( )

2
2 0

0

2 2
0

2 2
0

2 2 2
0 0

2 2 2
0 0

2 2 2
0 0

2 2 2
0 0

2
2

2
2

L L
L

L L

L L

L L

L L L

L L L

L L L

L L L

R Z jX
R Z jX

R Z X
R Z X
R R Z Z X
R R Z Z X

R Z X R Z
R Z X R Z

− +
Γ =

+ +

− +
=

+ +

− + +
=

+ + +

+ + −
=

+ + +

 

 
It is apparent that since both LR  and 0Z  are positive, the 
numerator of the above expression must be less than (or equal 
to) the denominator of the above expression. 
 

 In other words, the magnitude of the load reflection 
coefficient is always less than or equal to one! 
 
 

1LΓ ≤     (for 0LR ≥ ) 
 
 
Moreover, we find that this means the reflection coefficient 
function likewise always has a magnitude less than or equal to 
one, for all values of position z. 
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( ) 1zΓ ≤     (for all  z) 

 
Which means, of course, that the reflected wave will always 
have a magnitude less than that of the incident wave 
magnitude: 
 
 

( ) ( )V z V z− +≤          (for all  z) 
 

 
 
We will find out later that this result is consistent with 
conservation of energy—the reflected wave from a passive 
load cannot be larger than the wave incident on it. 
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Transmission Line  
Input Impedance 

 
Consider a lossless line, length , terminated with a load ZL. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Let’s determine the input impedance of this line! 
 

Q:  Just what do you mean by input impedance? 
 
A:  The input impedance is simply the line impedance seen 
at the beginning (z = − ) of the transmission line, i.e.: 
 

( ) ( )
( )in

V zZ Z z
I z

= −
= = − =

= −
 

Note Zin equal to neither the load impedance ZL nor the  
characteristic impedance Z0 !  
 

0     and      in inLZ Z Z Z≠ ≠  

I(z) 

0,Z β  
+ 
V (z) 
- 

+ 
VL 
- 

 

 
ZL 
 

IL 

z = −  0z =  
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To determine exactly what Zin is, we first must determine the 
voltage and current at the beginning of the transmission line 
(z = − ). 

0

0

0

j j
L

j j
L

V ( z ) V e e

VI ( z ) e e
Z

β β

β β

+ −+

+
+ −

⎡ ⎤= − = + Γ⎣ ⎦

⎡ ⎤= − = − Γ⎣ ⎦

 

Therefore: 
 

( )
( ) 0

j j
L

in j j
L

V z e eZ Z
I z e e

+ −

+ −

⎛ ⎞= − + Γ
= = ⎜ ⎟= − − Γ⎝ ⎠

β β

β β  

 
We can explicitly write inZ  in terms of load ZL using the 
previously determined relationship: 
 

0

0

L
L

L

Z Z
Z Z

−
=

+
Γ  

 
Combining these two expressions, we get: 
 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

0 0
0

0 0

0
0

0

j j
L L

in j j
L L

j j j j
L

j j j j
L

Z Z e Z Z e
Z Z

Z Z e Z Z e

Z e e Z e e
Z

Z e e Z e e

β β

β β

β β β β

β β β β

+ −

+ −

+ − + −

+ − + −

+ + −
=

+ − −

⎛ ⎞+ + −
= ⎜ ⎟⎜ ⎟+ − −⎝ ⎠

 

 
Now, recall Euler’s equations: 
 

cos sin
cos sin

j

j

e j
e j

β

β

β β

β β

+

−

= +

= −
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Using Euler’s relationships, we can likewise write the input 
impedance without the complex exponentials: 

 
0

0
0

0
0

0

cos sin
cos sin

tan
tan

L
in

L

L

L

Z j ZZ Z
Z j Z

Z j ZZ
Z j Z

β β
β β

β
β

⎛ ⎞+
= ⎜ ⎟

+⎝ ⎠
⎛ ⎞+

= ⎜ ⎟
+⎝ ⎠

 

 
Note that depending on the values  of 0,  and Zβ , the input 
impedance can be radically different from the load impedance 
ZL ! 
 
Special Cases 
 
Now let’s look at the Zin for some important load impedances 
and line lengths. 
 

 You should commit these results to memory! 
 
1.  2

λ=  
 
If the length of the transmission line is exactly one-half 
wavelength ( 2λ= ), we find that: 
 

2
2

π λβ π
λ

= =  

meaning that: 
 

cos cos 1      and      sin sin 0β π β π= = − = =  
 



 

8/27/2007 Transmission Line Input Impedance 4/9 

Jim Stiles The Univ. of Kansas Dept. of EECS 

and therefore: 
0

0
0

0
0

cos sin
cos sin

( 1) (0)
( 1) (0)

L
in

L

L L

L

L

Z j ZZ Z
Z j Z

Z j ZZ
Z j Z

Z

β β
β β

⎛ ⎞+
= ⎜ ⎟

+⎝ ⎠
⎛ ⎞− +

= ⎜ ⎟
− +⎝ ⎠

=

 

 
In other words, if the transmission line is precisely one-half 
wavelength long, the input impedance is equal to the load 
impedance, regardless of Z0 or β. 
 
 
 
 
 
 
 
 
 
2.   4

λ=  

 
If the length of the transmission line is exactly one-quarter 
wavelength ( 4λ= ), we find that: 
 

2
4 2

π λ πβ
λ

= =  

meaning that: 
 

cos cos 2 0      and      sin sin 2 1β π β π= = = =  

0,Z β  

2
λ=  

 
ZL 
 

 
in LZ Z=  

 



 

8/27/2007 Transmission Line Input Impedance 5/9 

Jim Stiles The Univ. of Kansas Dept. of EECS 

and therefore: 
 

( )

0
0

0

0
0

0

2
0

cos sin
cos sin

(0) (1)
(0) (1)

L
in

L

L

L

L

Z j ZZ Z
Z j Z

Z j ZZ
Z j Z

Z
Z

β β
β β

⎛ ⎞+
= ⎜ ⎟

+⎝ ⎠
⎛ ⎞+

= ⎜ ⎟
+⎝ ⎠

=

 

 
In other words, if the transmission line is precisely one-quarter 
wavelength long, the input impedance is inversely proportional to 
the load impedance. 
 
Think about what this means! Say the load impedance is a short 
circuit, such that 0LZ = .  The input impedance at  beginning of 
the 4λ  transmission line is therefore: 
 

( ) ( )2 2
0 0

0in
L

Z Z
Z

Z
= = = ∞  

 
inZ = ∞  !  This is an open circuit!  The quarter-wave transmission 

line transforms a short-circuit into an open-circuit—and vice 
versa! 
 

0,Z β  

4
λ=  

 
ZL=0 
 

 
inZ = ∞  

 



 

8/27/2007 Transmission Line Input Impedance 6/9 

Jim Stiles The Univ. of Kansas Dept. of EECS 

3.   0LZ Z=  
 
If the load is numerically equal to the characteristic impedance 
of the transmission line (a real value), we find that the input 
impedance becomes: 
 

0
0

0

0 0
0

0 0

0

cos sin
cos sin

cos sin
cos sin

L
in

L

Z j ZZ Z
Z j Z

Z j ZZ
Z j Z

Z

β β
β β

β β
β β

⎛ ⎞+
= ⎜ ⎟

+⎝ ⎠
⎛ ⎞+

= ⎜ ⎟
+⎝ ⎠

=

 

 
In other words, if the load impedance is equal to the 
transmission line characteristic impedance, the input impedance 
will be likewise be equal to Z0  regardless of the transmission 
line length . 
 
 
 
 
 
 
 
 
4.  L LZ j X=  
 
If the load is purely reactive (i.e., the resistive component is 
zero), the input impedance is: 

0,Z β  

 

 
ZL=Z0 
 

 
0inZ Z=  
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0
0

0

0
0 2

0

0
0

0

cos sin
cos sin

cos sin
cos sin

cos sin
cos sin

L
in

L

L

L

L

L

Z j ZZ Z
Z j Z

j X j ZZ
Z j X

X Zj Z
Z X

β β
β β

β β
β β

β β
β β

⎛ ⎞+
= ⎜ ⎟

+⎝ ⎠
⎛ ⎞+

= ⎜ ⎟
+⎝ ⎠

⎛ ⎞+
= ⎜ ⎟

−⎝ ⎠

 

 
In other words, if the load is purely reactive, then the input 
impedance will likewise be purely reactive, regardless of the 
line length . 
 
 
 
 
 
 
 
 
Note that the opposite is not true: even if the load is purely 
resistive (ZL = R), the input impedance will  be complex (both 
resistive and reactive components). 
 
Q:  Why is this? 
 
A: 

0,Z β  

 

 
ZL=jXL 
 

 
in inZ j X=
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5.  λ  
 
If the transmission line is electrically small—its length  is 
small with respect to signal wavelength λ --we find that: 
 

2 2 0πβ π
λ λ

= = ≈  

and thus: 
 

cos cos 0 1      and      sin sin 0 0β β= = = =  
 
so that the input impedance is: 
 

0
0

0

0
0

cos sin
cos sin

(1) (0)
(1) (0)

L
in

L

L L

L

L

Z j ZZ Z
Z j Z
Z j ZZ
Z j Z

Z

β β
β β

⎛ ⎞+
= ⎜ ⎟+⎝ ⎠

⎛ ⎞+
= ⎜ ⎟+⎝ ⎠
=

 

 
In other words, if the transmission line length is much smaller 
than a wavelength, the input impedance inZ  will always be equal 
to the load impedance LZ .   
 
This is the assumption we used in all previous circuits courses 
(e.g., EECS 211, 212, 312, 412)!  In those courses, we assumed 
that the signal frequency ω  is relatively low, such that the 
signal wavelength λ  is very large (λ ). 
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Note also for this case ( the electrically short transmission 
line), the voltage and current at each end of the transmission 
line are approximately the same! 

 
( ) ( 0)    and    I( ) ( 0)   if  V z V z z I z λ= − ≈ = = − ≈ =  

 
If λ ,  our “wire” behaves exactly as it did in EECS 211 ! 
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Power Flow and  
Return Loss 

 
We have discovered that two waves propagate along a  
transmission line, one in each direction ( ( ) ( ) and  V z V z+ − ).   
 
 
 
 
 
 
 
 
 
 
 
 
The result is that electromagnetic energy flows along the 
transmission line at a given rate (i.e., power).  
 

Q: How much power flows along a transmission line, and 
where does that power go? 

 
A: We can answer that question by determining the 

power absorbed by the load! 

0
0

0

( ) j z j zVI z e e
Z

β β
+

− +⎡ ⎤= − Γ⎣ ⎦  

    + 
( ) 0 0

j z j zV z V e eβ β− ++ ⎡ ⎤= + Γ⎣ ⎦  

    - 

+ 
VL 
- 

 

 
ZL 
 

IL 

z = −  0z =  
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The time average power absorbed by an impedance ZL is: 
 

{ }

{ }

( ) ( ){ }
( ){ }

( )

Re

Re

Re

Re

0 0 0 0
0 0 0 0

0
2

20
0 0 0

0
2

20
0

0

1
2
1 ( 0) ( 0)
2

1
2

1
2

1
2

abs L L

j j j j

P V I

V z I z

V e e V e e
Z

V
Z

V
Z

β β β β

∗

∗

∗
− + − ++ +

+
∗

+

=

= = =

⎡ ⎤ ⎡ ⎤= + Γ − Γ⎣ ⎦ ⎣ ⎦

= − Γ −Γ − Γ

= − Γ
 

 
The significance of this result can be seen by rewriting the 
expression as: 
 

( )
2

20
0

0
2 2

0 0 0

0 0
2 2

0 0

0 0

1
2

2 2

2 2

abs

V
P

Z

V V
Z Z

V V
Z Z

+

+ +

+ −

= − Γ

Γ
= −

= −

 

 
The two terms in above expression have a very definite physical 
meaning.  The first term is the time-averaged power of the 
wave propagating along the transmission line toward the load. 
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We say that this wave is incident on the load: 
 

2
0

02inc

V
P P

Z

+

+= =  

 
Likewise, the second term of the Pabs equation describes the 
power of the wave moving in the other direction (away from 
the load).  We refer to this as the wave reflected from the 
load: 
 

2 22
20 0 0

0 02 2 L incref

V V
P P P

Z Z

− +

−

Γ
= = = = Γ  

 
Thus, the power absorbed by the load (i.e., the power delivered 
to the load) is simply: 
 

abs inc refP P P= −  
 

or, rearranging, we find: 
 

inc abs refP P P= +  
 

This equation is simply an expression of the conservation of 
energy !   
 
It says that power flowing toward the load (Pinc) is either 
absorbed by the load (Pabs) or reflected back from the load 
(Pref). 
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Note that if 2 1LΓ = , then Pinc = Pref, and therefore no power is 
absorbed by the load. 
 
This of course makes sense !   
 
The magnitude of the reflection coefficient ( LΓ ) is equal to 
one  only when the load impedance is purely reactive (i.e., purely 
imaginary). 
 
Of course, a purely reactive element (e.g., capacitor or inductor) 
cannot absorb any power—all the power must be reflected! 
 
 
RRREEETTTUUURRRNNN   LLLOOOSSSSSS   
 
 
The ratio of the reflected power to the incident power is known 
as return loss. Typically, return loss is expressed in dB: 
 

 
 

 
ZL 
 

Pabs 

Pinc Pref 
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2
10 1010 10ref

L
inc

PR L
P

⎡ ⎤
= − = −⎢ ⎥

⎣ ⎦
Γ. . log log  

 
 
For example, if the return loss is 10dB, then 10% of the 
incident power is reflected at the load, with the remaining 90% 
being absorbed by the load—we “lose” 10% of the incident 
power 
 
Likewise, if the return loss is 30dB, then 0.1 % of the incident 
power is reflected at the load, with the remaining 99.9%  being 
absorbed by the load—we “lose” 0.1% of the incident power. 
 
Thus, a larger numeric value for return loss actually indicates 
less lost power!  An ideal return loss would be ∞dB, whereas a 
return loss of 0 dB indicates that 1LΓ = --the load is reactive! 
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VSWR 
 
Consider again the voltage along a terminated transmission line, 
as a function of position z : 
 

( ) 0
j z j z

LV z V e eβ β− ++ ⎡ ⎤= + Γ⎣ ⎦  
 

Recall this is a complex function, the magnitude of which 
expresses the magnitude of the sinusoidal signal at position z, 
while the phase of the complex value represents the relative 
phase of the sinusoidal signal. 
 
Let’s look at the magnitude only: 
 

( ) 0
2

0
2

0

| | | | | |
           | || ||1 |
           | ||1 |

j z j z
L

j z j z
L

j z
L

V z V e e
V e e
V e

β β

β β

β

− ++

− ++

++

= + Γ

= + Γ

= + Γ

 

 
ICBST the largest value of |V (z)| occurs at the location z 
where: 

2 0j z
L Le jβ+Γ = Γ +  

 
while the smallest value of |V (z)|occurs at the location z 
where: 

2 0j z
L Le jβ+Γ = − Γ +  
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As a result we can conclude that:  
 

( ) ( )

( ) ( )

0

0

1

1

L

L

V z V

V z V

+

+

= + Γ

= − Γ

max

min

 

 
The ratio of ( ) ( ) to V z V zmax min  is known as the Voltage 
Standing Wave Ratio (VSWR): 
 
 

( )
( )

1
VSWR 1

1
L

L

V z
VSWR

V z
+ Γ

= ∴ ≤ ≤ ∞
− Γ

max

min

 

 
 
Note if 0LΓ =  (i.e., 0LZ Z= ), then VSWR = 1.  We find for this 
case: 

( ) ( ) 0max min   V z V z V += =  
 

In other words, the voltage magnitude is a constant with 
respect to position z. 
 
Conversely, if 1LΓ =  (i.e., LZ jX= ), then VSWR = ∞ .  We find 
for this case: 
 

( ) ( ) 0min max0      and       2V z V z V += =  
 

In other words, the voltage magnitude varies greatly with 
respect to position z. 
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As with return loss, VSWR is dependent on the magnitude of ΓL 
(i.e, |ΓL|) only ! 
 
 

|V(z)|max 

|V(z)| 

|V(z)|min 

z 

2z λ∆ =  


