3 Microwave Components

Let's carefully examine each of the **microwave devices** that are useful for radio design:

- A. Transmission Lines
- **B.** Amplifiers
- C. Mixers
- D. Oscillators
- E. Isolators/Circulators
- F. Switches and Attenuators
- G. Power Dividers/Couplers
- H. Filters

A. Transmission Lines

Perhaps the most **common** transmission line structure is **coaxial** transmission line.

HO:Coaxial Transmission Lines

Coaxial transmission lines are used with **connectorized** devices.

HO: Coax Connectors

We can also construct transmission lines on printed **circuit boards**.

HO: Printed Circuit Board Transmission Lines

Coaxial Transmission Lines

Recall from EECS 220 that the **capacitance** per/unit length of a coaxial transmission line is:

$$C = \frac{2\pi\varepsilon}{\ln[b/a]} \qquad \left[\frac{\text{farads}}{\text{meter}}\right]$$

And that the inductance per unit length is :

$$L = \frac{\mu_0}{2\pi} \ln \left[\frac{b}{a} \right] \qquad \left[\frac{\text{Henries}}{\text{m}} \right]$$

Where of course the characteristic impedance is:

$$Z_o = \sqrt{\frac{L}{C}}$$
$$= \frac{1}{2\pi} \sqrt{\frac{\mu_0}{\epsilon}} \ln\left[\frac{b}{a}\right]$$

and:

$$\beta = \omega \sqrt{\mathcal{LC}} = \omega \sqrt{\mu_0 \varepsilon}$$

Therefore the **propagation velocity** of each TEM wave within a coaxial transmission line is:

$$V_{p} = \frac{\omega}{\beta} = \frac{1}{\sqrt{\mu_{0} \varepsilon}} = \frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}} \frac{1}{\sqrt{\varepsilon_{r}}} = c \frac{1}{\sqrt{\varepsilon_{r}}}$$

where $\varepsilon_r = \varepsilon/\varepsilon_0$ is the relative dielectric constant, and c is the "speed of light" ($c = 3 \times 10^8 \text{ m/s}$).

Note then that we can likewise express β in terms ε_r :

 $\beta = \omega \sqrt{\mu_0 \varepsilon} = \omega \sqrt{\mu_0 \varepsilon_0} \sqrt{\varepsilon_r} = \frac{\omega}{c} \sqrt{\varepsilon_r}$

Now, the **size** of the coaxial line (*a* and *b*) determines **more** than simply Z_0 and β (*L* and *C*) of the transmission line. Additionally, the line radius determines the **weight** and bulk of the line, as well as its **power handling** capabilities.

Unfortunately, these two characteristics **conflict** with each other!

1. Obviously, to **minimize** the weight and bulk of a coaxial transmission line, we should make *a* and *b* as **small** as possible.

2. However, for a given line voltage, reducing a and b causes the **electric field** within the coaxial line to **increase** (recall the units of electric field are V/m).

A higher electric field causes **two** problems: first, it results in greater **line attenuation** (larger α); second, it can result in **dielectric breakdown**.

Dielectric breakdown results when the electric field within the transmission line becomes so large that the dielectric material is **ionized**. Suddenly, the dielectric becomes a **conductor**, and the value *G* gets **very** large!

This generally results in the **destruction** of the coax line, and thus must be **avoided**. Thus, **large** coaxial lines are required when extremely **low-loss** is required (i.e., line length ℓ is large), **or** the delivered **power** is large.

Otherwise, we try to keep our coax lines as small as possible!

1/2

Coaxial Connectors

There are many types of **connectors** that are used to connect coaxial lines to RF/microwave devices. They include:

SMA

The workhorse **microwave** connector. Small size, but works well to > 20 GHz. By microwave standards, moderately priced.

BNC

F

The workhorse **RF** connector. Relatively small and cheap, and easy to connect. Don't use this connector past 2 GHz!

A poorman's BNC. The RF connector used on most consumer products such as TVs. Cheap, but difficult to connect and not reliable.

N The **original** microwave connector. Good performance (up to 18GHz), and moderate cost, but large (about 2 cm in diameter)! However, can handle greater **power** than SMA.

UHF

The poorman's N. About the same size, although **reduced** reliability and performance.

RCA

Not really an RF connector. Used primarily in consumer application for video and audio signals (i.e., <20 MHz). Cheap and easy to connect.

APC-7 and APC-3.5

The top of the line connector. Best performance, but cost **big \$\$\$**. Used primarily in test equipment (e.g., network analyzers). 3.5 can work to nearly 40 GHz. 2

<u>Printed Circuit Board</u> <u>Transmission Lines</u>

Recall that a transmission line **must** consist of **two separate conductors**. Typically, the volume between these conductors is filled with a very low-loss **dielectric**.

> For example, a **coaxial** line has an inner conductor (conductor #1) and an outer conductor (conductor #2), with the cylindrical space between filled with dielectric.

However, we can likewise construct a transmission line using **printed circuit board** technology. The **substrate** of the circuit board is the dielectric that separates two conductors. The **first conductor** is typically a **narrow** etch that provides the **connection** between two components, while the second conductor is typically a **ground plane**.

Below are some of the most popular types of printed circuit board transmission lines:

1/3

Microstrip

Probably most popular PCB transmission line. Easy fabrication and connection, yet is slightly dispersive, lossy, and difficult to analyze.

Stripline

Better than microstrip in that it is not dispersive, and is more easily analyzed. However, fabrication and connection is more difficult.

Coplanar Waveguide

The newest technology. Perhaps easiest to fabricate and connect components, as both ground and conductor are on one side of the board.

Slotline

Essentially, a dual wire tranmission line. Best for "balanced" applications. Not used much.

An antenna array feed, constructed using **microstrip** transmission lines and circuits.

Jim Stiles