F. Switches and Attenuators

A microwave switch is unique among the devices we have studied, as it has two (or more) possible states.

The state of the switch is controlled by some digital logic, and there is a different scattering matrix for each state.

HO: Microwave Switches

HO: The Microwave Switch Spec Sheet

Among the simplest microwave devices are fixed attenuators.
We can combine fixed attenuators with microwave switches to create very important and useful devices-the variable (digital) attenuator.

HO: Attenuators
HO: The Digital Attenuator Spec Sheet

Microwave Switches

Consider an ideal microwave SPDT switch.

The scattering matrix will have one of two forms:

$$
\mathcal{S}_{13}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right] \quad \mathcal{S}_{23}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

where \mathcal{S}_{13} describes the device when port 1 is connected to port 3:

and where \mathcal{S}_{23} describes the device when port 2 is connected to port 3:

These ideal switches are called matched, or absorptive switches, as ports 1 and 2 remain matched, even when not connected.

This is in contrast to a reflective switch, where the disconnected port will be perfectly reflective, i.e.,

$$
\mathcal{S}_{13}=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & e^{j \phi} & 0 \\
1 & 0 & 0
\end{array}\right]
$$

$$
\mathcal{S}_{23}=\left[\begin{array}{ccc}
e^{j \phi} & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

where of course $\left|e^{j \phi}\right|=1$.

1

3

Of course, just as with all ideal components, the ideal switch does not exist!

Using the fact that switches are reciprocal devices, we can write for \mathcal{S}_{13} for a non-ideal switch:

$$
\mathcal{S}_{13}=\left[\begin{array}{lll}
S_{11} & S_{21} & S_{31} \\
S_{21} & S_{22} & S_{32} \\
S_{31} & S_{32} & S_{33}
\end{array}\right]
$$

We can therefore consider the following parameters for specifying switch performance. In the following definitions, it is assumed that ports 1 and 3 are connected (i.e., port 2 is disconnected).

Insertion Loss

$$
I L=-10 \log _{10}\left|S_{31}\right|^{2}
$$

Insertion Loss indicates the loss encountered as a signal propagates through the switch. Ideally, this value is 0 dB . Typically, this value is around 1 dB .

Isolation

$$
\text { Isolation }=-10 \log _{10}\left|S_{32}\right|^{2}
$$

Isolation is a measure of how much power "leaks" into the disconnected port. Ideally, this value would be very largetypical switch isolation is $30-50 \mathrm{~dB}$.

Return Loss

$$
\text { Return Loss }=-10 \log _{10}\left|S_{11}\right|^{2}
$$

Just as we have always defined it! We of course want this value to very high (typical values are 20 to 40 dB). However, we find for reflective switches, this value can be nearly 0 dB for the disconnected port!

			,	,			
				, ${ }^{1}$			
			RONON:		. 10 V	-	
			H				
			3				

The Microwave Switch

Specification Sheet

Switch Type

A microwave switch is either absorptive or reflective, which refers to the input impedance of the disconnected port.

A microwave switch can have multiple ports (e.g., SPDT, SP4T)
Bandwidth (Hz)
A switch, like all other devices, can effectively operate only within a finite bandwidth (e.g., 2-5 GHz or $300-400 \mathrm{MHz}$).

Input Impedance (Γ, return loss, VSWR)
This of course is dependent on the state of the switch (i.e., whether a port is connected or disconnected).

Insertion Loss
 (dB)

Typically this is 2 dB or less for good switches, but is somewhat dependent on frequency (insertion loss increases with frequency).

Maximum Input power (dBm)

Switches have a maximum input power. Typical values range from 10 to 25 dBm .

Switching Speed (seconds)

The state of a microwave switch cannot change instantaneously. It takes some small but non-zero amount of time to change from one state to another. Typical values range from 0.1 to 10.0 μ-seconds.

Isolation (dB)

Typical values range from 20 to 50 dB .

Switch Logic

Describes the control line values required to switch the port switch state. Typically "TTL" logic values are used-0 volts for one state and 5 V for the other.

DC Power

Switches are not passive devices! They require a D.C. voltage (5 or 15 V typical) and will draw some amount of D.C current. The product of the two of course is equal to the D.C. power delivered to the switch (typically << 1W).

Attenuators

Under certain situations, we may actually want to reduce signal power!

Thus, we need an inverse amplifier-an attenuator.

An ideal attenuator has a scattering matrix of the form:

$$
\mathcal{S}=\left[\begin{array}{ll}
0 & \alpha \\
\alpha & 0
\end{array}\right]
$$

where $|\alpha|<1$.

Thus, an attenuator is matched and reciprocal, but it is certainly not lossless.

The attenuation of an attenuator is defined as:

$$
\text { Attenuation }=-10 \log _{10}|\alpha|^{2}
$$

Typical values of fixed attenuators (sometimes called "pads") are $3 \mathrm{~dB}, 6 \mathrm{~dB}, 10 \mathrm{~dB}, 20 \mathrm{~dB}$ and 30 dB .

For example, a 6 dB pad will attenuate as signal by 6 dB -the output power will be one forth of the input power.

One application of fixed attenuators is to improve return loss.
For example, consider the case where the return loss of a mismatched load is 13 dB :

Say we now add a 6 dB pad between the source and the loadwe find that the return loss has improved to 25 dB !

The reason that the return loss improves by 12 dB (as opposed to 6 dB) is that reflected power is attenuated twice-once as it travels toward the load, and again after it is reflected from it.

Note from the standpoint of the source, the load is much better matched. As a result, the effect of pulling is reduced.

However, there is a definite downside to "matching" with a fixed attenuator-the power delivered to the load is also reduced by 6 dB !

Q: Why do you keep referring to these devices as fixed attenuators? Do you really think we would use a broken one?

There are two types of (electronically) adjustable attenuators: digital and voltage controlled.

Digital Attenuators

As the name implies, digital attenuators are controlled with a set of digital (i.e., binary) control lines. As a result, the attenuator can be set to a specific number of discrete values.

For example, a 6-bit attenuator can be set to one of $2^{6}=64$ different attenuation values!

Digital attenuators are typically made from switches and fixed attenuators, arranged in the following form:

Theoretically, we can construct a digital attenuator with as many sections as we wish. However, because of switch insertion loss, digital attenuators typically use no more than 8 to 10 bits (i.e., 8 to 10 sections).

It is apparent from the schematic above that each section allows us to switch in its attenuator into the signal path (maximum attenuation):

Or we can bypass the attenuators, thus providing no attenuation (except for switch insertion loss!):

Or we can select some attenuators and bypass others, thus setting the attenuation to be somewhere in between max and $\min !$

For most digital attenuators, the attenuation of each section has a different value, and almost always are selected such that the values in dB are binary.

For example, consider a 6-bit digital attenuator. A typical design might use these attenuator values:

	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
attenuator	32 dB	16 dB	8 dB	4 dB	2 dB	1 dB

We note therefore, that by selecting the proper switches, we can select any attenuation between 0 dB and 63 dB , in steps of 1 dB .

For example, the 6-bit binary word 101101 would result in attenuation of:

$$
32+8+4+1=45 \mathrm{~dB}
$$

Note also that 101101 is the binary representation of the decimal number 45-the binary control word equals the attenuation in dB!!

Voltage Controlled Attenuators

Another adjustable attenuator is the voltage-controlled attenuator. This device uses a single control line, with the voltage at that control determining the attenuation of the device (an "analog" attenuator!):

Typical voltage control attenuators can provide attenuation from a minimum of a few dB to a maximum of as much as 50 dB .

Unlike the digital attenuator, this attenuation range is a continuous function of V_{c}, so that any and every attenuation between the minimum and maximum values can be selected.

Voltage controlled attenuators are typically smaller, simpler, and cheaper than their digital counterparts.

A: We have yet to discuss the bad stuff about voltage controlled attenuators!

* Voltage controlled attenuators are generally speaking poorly matched, with a return loss that varies with the control voltage V_{c}.
* Likewise, the phase delay, bandwidth, and just about every other device parameter also changes with V_{c} !
* Moreover, voltage controlled attenuators are notoriously sensitive to temperature, power supply variations, and load impedance.

Digital attenuators, on the other hand, generally exhibit none of the problems!

In addition, digital attenuators are ready made for integration with digital controllers or processors (i.e., computers).

However, digital attenuators do have a downside-they can be relatively large and expensive.

The Digital Attenuator

Specification Sheet

Number of Sections

Equal to the number of bits.

Bandwidth (Hz)

This device, like all other devices, can effectively operate only within a finite bandwidth (e.g., $2-5 \mathrm{GHz}$ or $300-400 \mathrm{MHz}$).

Port Impedance ($Г$, return loss, VSWR)
This value should remain constant, regardless of the state of the digital attenuator.

Insertion Loss (dB)

This is defined as the attenuation of the device in its minimum attenuation state (i.e., no attenuators are selected). Ideally, this would be 0 dB . However, the insertion loss of the switches makes this ideal value unachievable.

Typically, insertion loss will be equal to approximately 1 dB per bit. In other words a 6-bit attenuator will have an insertion loss of 6 dB .

DC Power

See microwave switch spec sheet.

Maximum Attenuation (dB)

The attenuation of the device with all fixed attenuators selected. This value is therefore the sum (in dB) of every fixed attenuator, plus the insertion loss discussed above. Remember, the insertion loss of the switches is prevalent regardless of the attenuator state.

Attenuation Step Size (dB)

The vast majority of digital attenuators have attenuation states that are separated by a fixed value (e.g., $0.5,1.0$, or 2 dB).

Maximum Input power (dBm)
Digital attenuators have a maximum input power.

Switching Speed (seconds)

The state of a microwave switch cannot change instantaneously. It takes some small but non-zero amount of time to change from one attenuation state to another. Typical values range from 0.1 to 20.0μ seconds.

Switch Logic

This defines the digital logic required to select an attenuation element. Typically, OV deselects an attenuation element, whereas 5.0 V selects the attenuation value.

