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B. Spherical Wave Propagation   
 
Every antenna launches a spherical wave, thus its power 
density reduces as a function of 21 r , where r is the distance 
from the antenna.   
 
We can determine the power radiated by an antenna if we 
know the power density of the propagating spherical wave it 
produces.   
 
HO: Total Radiated Power   
 
To describe how an antenna distributes radiated power, we 
first need to understand the concept of a solid angle—
measured in units of steradians.   
 
HO: The Steradian   
 
We find that an antenna never radiates power equally in all 
directions.  Instead, it radiates power more in some directions 
and less in others. The mathematical description of this 
distribution is called radiation intensity.  
 
 HO: Radiation Intensity 
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Total Radiated Power 
 
So, we know that an antenna (located at the origin) will 
produce a radiated power density of the form: 
 

( ) ( ) 2

ˆ
,r U

r
=

rW θ φ  

 
Q:  But this is the power density—a function of spatial 
position (i.e., a function of r , ,θ φ ).  Is there any way to 
determine the total power radiated by an antenna? 
 
A:  The power density function gives us all we need to know 
to determine the power radiated by an antenna ( radP ). 
 
To see why, first consider some aperture (i.e., window) 
defined by surface area S.  Say that at some (perhaps 
large) distance away from this surface, there exists a 
radiating antenna. 
 

This radiating antenna produces a propagating 
electromagnetic wave at all points throughout the 
entire universe!   

 
The entire universe includes our aperture 
(surface S) and thus there must be 
electromagnetic energy propagating 
through this aperture (i.e., from one side 
of surface S to the other). 

S 
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Q:  But an electromagnetic wave contains energy, and thus 
energy must be passing through this aperture. Can we 
determine the rate of this energy flow through surface S? 
 
A: No problem!  If we know the power density ( )rW , we can 
always determine the power flowing through some aperture S 
using a surface integration: 
 

( )
S

P r ds= ⋅∫∫W  

 
Hopefully this makes sense to you!  We simply integrate the 
power density (in W/m2) flowing through the surface S (in m2) 
to determine the rate of energy flow (in Watts) through the 
entire surface S. 
 
Q:  So the value P is the power radiated by the antenna ? 
 

S 
( )rW  



 

11/8/2007 Total Radiated Power 3/6 

Jim Stiles The Univ. of Kansas Dept. of EECS 

A: Absolutely not!  Although the power P does depend on the 
power density produced by the antenna, it also depends on the 
location, orientation, and size of aperture S.   
 
For example, if the aperture size approaches zero, the power 
P flowing through the aperture likewise approaches zero. This 
of course does not mean that the power radiated by the 
antennas is zero—it is likely very large. 
 

However, there are surfaces S were the 
surface integration does tell us precisely 
the radiated power! 
 
Consider now a closed surface—one that 
completely surrounds the radiating 
antenna.  

 
 
It turns out that integrating the power density across this 
closed surface will tell us the power radiated by the antenna: 
 
 

( )rad
S

P r ds= ⋅∫∫W  

 
 

Q:  Yikes, why does this work?  What’s so special about a 
closed surface? 
 
A:  Essentially, this works because of conservation of energy. 
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Remember, an antenna propagates electromagnetic energy 
outward from the antenna.  This energy flows in all possible 
directions (although not uniformly in all directions!). 
 
If we integrate the power density across a surface that 
completely surrounds the antenna, then we are “capturing” 
the energy flowing outward in all possible directions.  
 

 There are no “holes” in a closed surface! 
 

Our answer thus describes the total power flowing outward 
from the antenna.  By conservation of energy, this must be 
equal to the power being radiated by the antenna! 
 

There is one important caveat to this statement.  
The volume surrounded by closed surface S must be 
lossless.  If there is lossy material in this volume, 
then some of the radiated power will be absorbed by 
this material, and thus will not propagate through 
closed surface S.  In this case we will find: 

 
( ) volume is lossyrad

S
P r ds> ⋅∫∫W if  

 
But, we will assume that the volume is not lossy, that it is 
essentially free-space  (e.g., a clear atmosphere). 

 
Q:  But what should the closed surface S be?  Doesn’t the 
integration depend on the size/shape of closed surface S? 
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A:  Although this would seem to be the case, it is in fact not.  
Any and all closed surfaces that surround the antenna will in 
fact provide the same answer for the surface integration.   
 

  After all, there is only one correct value of radP ! 
 
Q: Since it doesn’t matter, can I just choose any closed 
surface S that surrounds the antenna. 
 
A:  Theoretically yes, but being efficient (i.e., lazy) engineers, 
we might choose a surface S that makes the surface 
integration as easy as possible.   
 
This closed surface is simply a sphere, centered at the origin 
(i.e., centered at the antenna location).   To see how this 
simplifies things, consider a spherical surface S, with radius a. 
 
This surface is thus described as: 
 

0 0 2r a θ π φ π= ≤ ≤ ≤ ≤  
 
and 2ˆds r d dθ φ= r . 
 
Given that the radiated power density has the form: 
 

( ) ( ) 2

ˆ
,r U

r
=

rW θ φ  

 
we find that the surface integral is: 
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( ) ( )

( )

2
2

2
0 0

2

0 0

1
S

ˆ ˆr ds U , r d d
r

U , d d

π π

π π

θ φ θ φ

θ φ θ φ

⋅ = ⋅

=

∫∫ ∫ ∫

∫ ∫

W r r
 

 
Thus, we find that we can always determine the radiated 
power by integrating over the radiation intensity function 
produced by the antenna: 
 
 

( )
2

0 0
radP U , d d

π π

θ φ θ φ= ∫ ∫  

 
 
 
 
 



 

11/8/2007 The Steradian 1/5 

Jim Stiles The Univ. of Kansas Dept. of EECS 

The Steradian 
 
Q:  What the heck is a steradian? 
 
A:  First, let’s examine what a radian is! 
 
Recall for a circle (a two-dimensional object), we find: 

 
rφ=  

where: 
 

[ ]

[ ]

 arc length  

 angle  

 radius  

m

radians

r m

φ

=

= ⎡ ⎤⎣ ⎦

=

 

 
An arc length that entirely surrounds the circle would be the 
circle’s circumference (C ).  The angle φ that subtends this  
arc length is of course be 2π, and inserting these values into 
the equation above gives:   
 
 
 
 
 
Look familiar? 
 

 

φ  

r  

2C rπ=  

C=  
2φ π=  

r  
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A: True enough!  The 3-dimensional equivalent of a circle is a 
sphere.   

Consider a small patch on                    
the surface of the sphere, 

with surface area A .   
 

Each patch is 
subtended by a 
cone, whose point 
begins at the 
center of the 
sphere.  
 

The larger the 
surface area of the 

patch, the larger the 
cone. 

 
 
We say this cone forms a solid angle Ω, and the size of this 
cone is expressed in Steradians!   

 

 

Q: But wait! A circle is a two-
dimensional structure, yet we 
(along with our antennas) live 
in a three-dimensional world. 
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Q:  How do we determine the size of a solid angle in 
steradians? 
 
A:  The size Ω  of a solid angle that subtends a section of 
surface area on a sphere with radius r is:  
 

2
A
r

Ω =  

 
where A the area of the subtended surface (i.e., the area of 
the “patch”) and Ω  is expressed in steradians. 
 

Be careful! The units of A and r must be the same!  
For example if A = 100 m2 then r must be expressed 
in meters.  If r =5 kilometers then A must be 
expressed in km2. 
 

Now, we can rewrite the above equation into its more common 
form: 
 

2A r= Ω  
 
 
Note that neither the shape of the subtended patch of 
surface, nor the shape of the resulting solid angle, matters in 
the above relationship. 
 
In other words the subtended patch could be a circle, 
triangle, square, or any other shape.  The result above would 
be the same! 
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Therefore, if 1 2 3A A A= = , then 1 2 3Ω = Ω = Ω .  Even though 
they have different shapes, they have precisely the same 
size! 
 
Q:  What if the solid angle gets so large that it subtends the 
entire surface of the sphere?  What is the size of the solid 
angle then??? 
 
A:  Recall the surface of an entire sphere has area: 
 

24A rπ=  
 
We likewise know that: 
 

2A r= Ω  
 

Equating these two, we find that a solid angle that subtends 
the entire surface of a sphere must have a size of 4π  
steradians! 

A1 A2 A3 

r r r 

Ω1 Ω2 
Ω3 
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Thus, we conclude that a planar angle of 2π radians 
subtends the entire circumference of a circle, but a 
solid angle of 4π steradians subtends the entire 
surface of a sphere. 
 
 
 

Note this means that a solid angle of 2π steradians 
subtends the surface of a hemisphere. 
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Radiation Intensity 
 
We found that the power density of a spherical wave 
produced by an antenna located at the origin has the form: 
 

( ) ( ) 2

ˆr , , U ,
r

θ φ θ φ=
rW  

 
and that the total radiated power from an antenna located at 
the origin is: 

( )
2

0 0
radP U , sin d d

π π

θ φ θ θ φ= ∫ ∫  

 
Q:  This “radiation intensity” ( )U ,θ φ  seems to be very 
important.  What does it indicate? Does it have any physical 
meaning? 
 
A:  It turns out that an antenna does not (in fact, it cannot) 
radiate power uniformly in all directions.  Rather, an antenna 
distributes power unequally—more power in some directions 
and less power in others. 
 
The radiation intensity ( )U ,θ φ  describes this unequal 
distribution of power—it tells how the radiated power is 
distributed as a function of radiation direction. 
 
Q:  What are the units of the radiation intensity function? 
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A:  Radiation intensity is expressed in units of— 
Watts/steradian! 
 
To see why, consider the (impossible) case where an antenna 
does distribute radiated power equally in all directions. We 
call this isotropic radiation.  
 
The intensity in this case is thus a constant: 
 

( ) 0U , Uθ φ =  
 

Although this isotropic intensity function is physically 
impossible, it will help illustrate the physical meaning of 
intensity. 
 
We find that the radiated power for this case is: 
 

( )

( ) ( )

2

0 0
2

0
0 0

2

0
0 0

0

0

2 2
4

radP U , sin d d

U sin d d

U sin d d

U
U

π π

π π

π π

θ φ θ θ φ

θ θ φ

θ θ φ

π
π

=

=

=

=

=

∫ ∫

∫ ∫

∫ ∫  

 
We can rearrange this result to determine that the intensity 
produced by an isotropic radiator is: 
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( ) 0 4
radP WattsU , U

steradian
θ φ

π
⎡ ⎤= = ⎢ ⎥⎣ ⎦

 

 
 

Q:  What’s up with that 4π  in the denominator?  Does it have 
any significance? 
 
A:  Absolutely!  Look again at the units of intensity—
Watts/Steradian.  Compare this to the expression for 
isotropic radiation intensity: 
 
 

0 4
rad

steradi
P Wat

an
U ts

π
⎡ ⎤= ⎢ ⎥⎣ ⎦

 

 
 
In other words, the antenna radiates radP  Watts uniformly 
throughout a solid angle of 4π  steradians. 
 
Q:  4π  steradians!  Isn’t that the size of a solid angle that 
subtends an entire sphere? 
 
A:  You bet! 4π  steradians is the largest possible solid angle, 
one that includes all possible directions θ  and φ .  
 
Now, say that an antenna radiates all its power 
uniformly throughout a one hemisphere (and thus no 
power into the other hemisphere).   

For isotropic 
radiator only! 
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The radiation intensity in one hemisphere (with a solid angle 
of 2π  steradians) is therefore 2radP π , and zero in the other: 
 

( )

in one hemisphere
2

0 in the other hemisphere

radP

WD , strd
π

θ φ

⎧
⎪
⎪ ⎡ ⎤= ⎨ ⎣ ⎦⎪
⎪
⎩

 

 
Note that the antenna in this case places all its radiated 
power in a solid angle half the size of the isotropic case.  As a 
result, the intensity in the solid angle is twice as large as the 
isotropic case! 
 
Or, if an antenna radiates all its power 
uniformly throughout a solid angle of Ω  
steradians, the radiation intensity within 
this solid angle will be radP Ω , and zero 
outside the solid angle: 
 

( )

inside solid angle 

0 outside solid angle 

radP

WD , strdθ φ

⎧ Ω⎪ Ω⎪ ⎡ ⎤= ⎨ ⎣ ⎦⎪ Ω⎪
⎩

 

 
Note that as the solid angle gets smaller, the intensity will 
increase (assuming radP  remains unchanged).  As the antenna 
“focuses” its power into a smaller and smaller cone, the 
intensity in that cone will get larger and larger. 
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This is somewhat(?) analogous to 
compressing a fixed amount of 
gas into a smaller and smaller 
volume—the pressure within the 
volume will get more intense!  

 
These are simple examples to illustrate the meaning of 
radiation intensity ( )U ,θ φ .  However, we find that the 
radiation intensity of real antennas will be continuous 
functions of θ  and φ .  For example: 
 

( ) 210 0D , . cos sinθ φ θ φ=  
 

Q:  I’m a bit confused.  What’s the difference between 
radiation intensity ( )U ,θ φ  and power density ( )rW  ? 
 
A:  Recall the two are related by the expression: 
 

( ) ( ) 2

ˆr , , U ,
r

θ φ θ φ=
rW  

 
From this expression we note these differences: 
 
1.   Radiation Intensity ( )U ,θ φ  is a scalar quantity, while 
power density ( )rW  is a vector quantity. 
 
2.  Radiation Intensity ( )U ,θ φ  is a function of coordinates θ  
and φ  only, while power density ( )rW  is a function of all 
three spherical coordinates r , ,θ φ . 
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From these observations we can conclude: 
 
Radiation Intensity ( )U ,θ φ  is a description of how an antenna 
(located at 0r = ) behaves—how it distributes energy across 
different directions defined by coordinates θ  and φ . 
 
Power density ( )rW  is a description of the propagating 
(spherical) electromagnetic wave created by the antenna.  It 
is defined at all points in the universe—we can determine the 
magnitude and direction of the power density at any location 
in space—a location denoted by coordinates r , ,θ φ . 
 

Finally, let’s again consider the mythical isotropic 
radiator.  We know that the intensity of such a 
radiator will be uniform across all directions: 

 

( ) 0 4
radP WattsU , U

steradian
θ φ

π
⎡ ⎤= = ⎢ ⎥⎣ ⎦

 

 
And thus the power density created by this isotropic radiator 
will be: 

( ) ( ) 2

0 2

2

2

4

4

rad

rad

ˆr , , U ,
r

ˆU
r

ˆP
r

P ˆ
r

θ φ θ φ

π

π

=

=

=

=

rW

r

r

r

 

 

For isotropic 
radiator only! 
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Note that this makes perfect sense!   
 
Consider a sphere, centered at the origin, with radius r.   At 
the center of this sphere is an isotropic radiator, and thus 
the power density must be precisely the same at every 
point on the surface of this sphere. 
 
Q: Why is that? 
 
A:  Remember, the radiation of an isotropic radiator is 
independent of θ  and φ  (i.e., the same in all directions), and 
every point on the sphere is precisely the same distance from 
the radiator (the distance r).  The power density thus must 
likewise be a constant across this entire spherical surface. 
 
Q:  But what is the value of this constant? 
 
A:  We simply take the power flowing through this sphere 
(i.e., radP  by conservation of energy), and divide it by the 
surface area of the sphere.  Recall the surface area of this 
sphere is 24 rπ ! 
 
 

( ) 24
rad ˆP Watt
r unit are

, , sr
a

θ
π

φ =W r  
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Spherical Coordinates 
 

*  Geographers specify a location on 
the Earth’s surface using three scalar 
values: longitude, latitude, and 
altitude.   
 
*  Both longitude and latitude are 
angular measures, while altitude is a 
measure of distance.   
 
*  Latitude, longitude, and altitude are 
similar to spherical coordinates.   

 
*  Spherical coordinates consist of one scalar value (r), with 
units of distance, while the other two scalar values ( ,θ φ ) have 
angular units (degrees or radians). 
 
 
 
 
 

x 

y 

z 

P( , ,r θ φ ) 
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1.  For spherical coordinates, r (0 r≤ < ∞) expresses the 
distance of the point from the origin (i.e., similar to altitude). 
 
2.  Angle θ  (0 θ π≤ ≤ ) represents the angle formed with the 
z-axis (i.e., similar to latitude). 
 
3.  Angle φ  (0 2φ π≤ < ) represents the rotation angle around 
the z-axis, precisely the same as the cylindrical coordinate φ 
(i.e., similar to longitude). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thus, using spherical coordinates, a point in space can be 
unambiguously defined by one distance and two angles. 
 
 
 
 
 

 
 

x 

y 

z 

P(3.0,45 0,6° ° ) 45θ °=  

r =3.0 

60φ °=  

 P(0,θ,φ) 


