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2.1 -The Lumped Element Circuit 
Model for Transmission Lines 

 
Reading Assignment:  pp. 1-5, 49-52 
 
Q:  So just what is a transmission line? 
 
A:   
 
 

   
 
Q:  Oh, so it’s simply a conducting wire, right? 
 
A:   
 
 
HO: The Telegraphers Equations 
 
Q:  So, what complex functions  I(z) and V(z) do satisfy both 
telegrapher equations? 
 
A:   
 
HO: The Transmission Line Wave Equations 
 
Q:  Are the solutions for I(z) and V(z) completely 
independent, or are they related in any way ? 
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A:   
 
 
HO: The Transmission Line Characteristic Impedance 
 
Q:  So what is the significance of the complex constant γ? 
What does it tell us? 
 
A:    
  
 
HO: The Complex Propagation Constant 
 
Q:   Is characteristic impedance Z0 the same as the concept 
of impedance I learned about in circuits class? 
 
A:  
 
 
 
HO: Line Impedance 
 
Q:  These wave functions ( )V z+  and ( )V z−  seem to be 
important.  How are they related? 
 
A:   
 
 
HO:  The Reflection Coefficient 
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Q:  Now, you said earlier that characteristic impedance Z0 is 
a complex value.  But I recall engineers referring to a 
transmission line as simply a “50 Ohm line”, or a “300 Ohm 
line”.  But these are real values; are they not referring to 
characteristic impedance Z0 ?? 
 
A:   
 
 
 
HO:  The Lossless Transmission Line 
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The Telegrapher Equations 
 
Consider a section of “wire”: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Q:  Huh ?! Current i and voltage v are a function of position z ?? 
Shouldn’t  ( , ) ( , )i z t i z z t= + ∆ and ( , ) ( , )v z t v z z t= + ∆  ? 
 
A: NO ! Because a wire is never a perfect conductor. 
 
A “wire” will have: 
 

1) Inductance 
2) Resistance 
3) Capacitance 
4) Conductance 

 

i (z,t) i (z+∆z,t) 

+ 
v (z,t) 
- 

+ 
v (z+∆z,t) 
- 

∆z 
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 i.e., 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Where: 
 

R = resistance/unit length 
L = inductance/unit length 
C = capacitance/unit length 
G = conductance/unit length 

 
∴ resistance of wire length ∆z  is R∆z. 

 
 
 
Using KVL, we find: 

( , )( , ) ( , ) ( , ) i z tv z z t v z t R z i z t L z
t

∂
+ ∆ − = − ∆ − ∆

∂
 

 
and from KCL: 

( , )( , ) ( , ) ( , ) v z ti z z t i z t G z v z t C z
t

∂
+ ∆ − = − ∆ − ∆

∂
 

i (z,t) i (z+∆z,t) 

+ 
 
v (z,t) 
 
- 

+ 
 
v (z+∆z,t) 
 
- 

R ∆z L ∆z 

G ∆z 
C ∆z 

∆z 
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Dividing the first equation by ∆z, and then taking the limit as 
0z∆ → : 

( , ) ( , ) ( , )( , )
0

lim
z

v z z t v z t i z tR i z t L
z t∆ →

+ ∆ − ∂
= − −

∆ ∂
 

 
which, by definition of the derivative, becomes: 
 

( , ) ( , )( , )v z t i z tR i z t L
z t

∂ ∂
= − −

∂ ∂
 

 
Similarly, the KCL equation becomes: 
 

( , ) ( , )( , )i z t v z tG v z t C
z t

∂ ∂
= − −

∂ ∂
 

 
If ( , ) , and ( )v z t i z t  have the form: 
 

{ }( , ) Re ( ) j tv z t V z e ω=    and   { }( , ) Re ( ) j ti z t I z e ω=  

 
then these equations become: 
 

 
 

( ) ( ) ( )V z R j L I z
z

ω∂
= − +

∂
 

 
( ) ( ) ( )ω∂

= − +
∂
I z G j C V z

z
 

 
 
These equations are known as the telegrapher’s equations ! 
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*  The functions I(z) and V(z) are complex, where the 

magnitude and phase of the complex functions describe the 
magnitude and phase of the sinusoidal time function j te ω . 

 
*  Thus, I(z) and V(z) describe the current and voltage along the 

transmission line, as a function as position z. 
 
*  Remember, not just any function I(z) and V(z) can exist on a 

transmission line, but rather only those functions that 
satisfy the telegraphers equations. 

 
 
 
 
 

Our task, therefore, is to solve 
the telegrapher equations and 
find all solutions I (z) and V (z)! 
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The Transmission Line 
Wave Equation 

 
Q: So, what functions I (z) and V (z) do satisfy both 
telegrapher’s equations?? 
 
A: To make this easier, we will combine the telegrapher 
equations to form one differential equation for V (z) and 
another for I(z). 
 
First, take the derivative with respect to z of the first 
telegrapher equation: 
 

( ) ( ) ( )

( ) ( )( )

ω

ω

∂ ∂⎧ ⎫= − +⎨ ⎬
∂ ∂⎩ ⎭
∂ ∂

= = − +
∂ ∂

V z R j L I z
z z

V z I zR j L
z z

2

2

 

 
Note that the second telegrapher equation expresses the 
derivative of I(z) in terms of V(z): 
 

( ) ( ) ( )ω∂
= − +

∂
I z G j C V z

z
 

 
Combining these two equations, we get an equation involving V (z) 
only: 
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( ) ( )( ) ( )

( )

ω ω∂
= + +

∂
=

V z R j L G j C V z
z

V z

2

2

2γ
 

 
where it is apparent that: 
 
 

2 ( R j L)( G j C )γ ω ω+ +  
 
 
In a similar manner (i.e., begin by taking the derivative of the 
second telegrapher equation), we can derive the differential 
equation: 

I ( z ) I ( z )
z

2
2∂

=
∂

γ  

 
We have decoupled the telegrapher’s equations, such that we 
now have two equations involving one function only: 
 
 

V ( z ) V ( z )
z

I ( z ) I ( z )
z

2
2

2
2

∂
=

∂

∂
=

∂

γ

γ

 

 
 
Note only special functions satisfy these equations: if we take 
the double derivative of the function, the result is the original 
function (to within a constant)! 
 



1/20/2005 The Transmission Line Wave Equation.doc 3/6 

Jim Stiles The Univ. of Kansas Dept. of EECS 

 
 
 
 
 
 
 
 
 
 
A: Such functions do exist !   
 
For example, the functions  ( ) zV z e γ−=  and  ( ) zV z e γ+=  each 
satisfy this transmission line wave equation (insert these into 
the differential equation and see for yourself!).  
 
Likewise, since the transmission line wave equation is a linear 
differential equation, a weighted superposition of the two 
solutions is also a solution (again, insert this solution to and see 
for yourself!): 
 

( ) 0 0
z zV z V e V eγ γ+ − − += +  

 
In fact, it turns out that any and all possible solutions to the 
differential equations can be expressed in this simple form! 
 

Q: Yeah right! Every  function that 
I know is changed after a double 
differentiation.  What kind of 
“magical” function could possibly 
satisfy this differential equation?  
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Therefore, the general solution to these wave equations (and 
thus the telegrapher equations) are: 

 
 

z z

z z

V ( z ) V e V e

I ( z ) I e I e

0 0

0 0

+ − − +

+ − − +

= +

= +

γ γ

γ γ

 

 
 
where V , V , I , I ,0 0 0 0 and+ − + − γ  are complex constants. 
 

 It is unfathomably important that you understand what this 
result means!  
 
It means that the functions V(z) and I(z), describing the 
current and voltage at all points z  along a transmission line, can 
always be completely specified with just four complex 
constants ( 0 0 0 0V , V , I , I+ − + − )!! 
 
We can alternatively write these solutions as: 
 

( ) ( ) ( )

( ) ( ) ( )

V z V z V z

I z I z I z

+ −

+ −

= +

= +

 

where:  
 

( ) ( )

( ) ( )

0 0

0 0

z z

z z

V z V e V z V e

I z I e I z I e

γ γ

γ γ

+ + − − − +

+ + − − − +
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The two terms in each solution describe two waves propagating 
in the transmission line, one wave (V +(z) or I +(z) ) propagating 
in one direction (+z) and the other wave (V -(z) or I -(z) ) 
propagating in the opposite direction (-z). 
 
 
 
 
 
 
 
Therefore, we call the differential equations introduced in this 
handout the transmission line wave equations. 
 
 
Q:  So just what are the complex values 0 0 0 0V , V , I , I+ − + −  ? 
 
A:  Consider the wave solutions at one specific point on the 
transmission line—the point z = 0.  For example, we find that: 
 

( )
( )

( )

( 0)
0

0
0

0

0

0

1

zV z V e
V e
V
V

γ+ + − =

−+

+

+

= =

=

=

=

 

 
In other words, 0V +  is simply the complex value of the wave       
function V +(z) at the point z =0 on the transmission line! 
 

( ) 0
zV z V e γ− − +=

z 

( ) 0
zV z V e γ+ + −=
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Likewise, we find:  
( )

( )

( )

0

0

0

0

0

0

V V z

I I z

I I z

− −

+ +

− −

= =

= =

= =

 

 
Again, the four complex values 0 0 0 0V , I , V , I+ + − −  are all that is 
needed to determine the voltage and current at any and all 
points on the transmission line.  
 
More specifically, each of these four complex constants 
completely specifies one of the four transmission line wave 
functions ( )V z+ , ( )I z+ , ( )V z− , ( )I z− . 
 
 
 
 
 
 
 
 
A:  As you might expect, the voltage and current on a 
transmission line is determined by the devices attached to it on 
either end (e.g., active sources and/or passive loads)! 
 
The precise values of 0 0 0 0V , I , V , I+ + − −  are therefore determined 
by satisfying the boundary conditions applied at each end of 
the transmission line—much more on this later! 

Q:  But what determines these wave 
functions?  How do we find the values 
of constants  0 0 0 0V , I , V , I+ + − −? 
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The Characteristic 
Impedance of a 
Transmission Line 

 
So, from the telegrapher’s differential equations, we know that 
the complex current I(z) and voltage V (z) must have the form: 
 

z z

z z

V ( z ) V e V e

I ( z ) I e I e

0 0

0 0

+ − − +

+ − − +

= +

= +

γ γ

γ γ

 

 
 
Let’s insert the expression for V (z) into the first telegrapher’s 
equation, and see what happens ! 
 

0 0
z zdV ( z ) V e V e ( R j L)I ( z )

dz
+ − − += − + = − +γ γ ωγ γ  

 
Therefore, rearranging, I (z) must be: 
 

0 0( )z zI ( z ) V e V e
R j L

γ γγ
ω

+ − − += −
+
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A:  Easy ! Both expressions for current are equal to each other. 
 

γ
0 0 0 0( )z z z zI ( z ) I e I e V e V e

R j L
γ γ γ γ

ω
+ − − + + − − += + = −

+
 

 
For the above equation to be true for all z, 0 0 and I V  must be 
related as: 
 

0 0 0 0      and        z z z zI e V e I e V e
R j L R j L

+ − + − − + − +⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

−γ γ γ γ

ω ω
γ γ  

 
Or—recalling that ( )0

zV e V z+ − +=γ   (etc.)—we can express this in 
terms of the two propagating waves: 
 

( ) ( ) ( ) ( )      and        I z V z I z V z
R j L R j L

+ + − −⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

−
ω ω

γ γ  

 
 Now, we note that since: 
 

( ) ( )  R j L G j C= + +γ ω ω  
 

Q: But wait !  I thought we already knew 
current I(z). Isn’t it: 
 

0 0
z zI ( z ) I e I eγ γ+ − − += +   ?? 

 
How can both expressions for I(z) be true?? 
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We find that: 
 

( ) ( )  R j L G j C G j C
R j L R j L R j L

+ + +
= =

+ + +

ω ω ω
ω ω ω

γ  

 
Thus, we come to the startling conclusion that: 
 

 
( )
( )

( )
( )

      and      
V VR j L R j L
I G j C I G j C

z z
z z

+ −

+ −

−+ +
= =

+ +

ω ω

ω ω
 

 
 
 
Q:  What’s so startling about this conclusion? 
 
A:  Note that although the magnitude and phase of each 
propagating wave is a function of transmission line position z 
(e.g., ( )V z+  and ( )I z+ ), the ratio of the voltage and current of 
each wave is independent of position—a  constant with respect 
to position z ! 
 
Although 0 0 and V I± ±  are determined by boundary conditions 
(i.e., what’s connected to either end of the transmission line), 
the ratio 0 0V I± ± is determined by the parameters of the 
transmission line only (R, L, G, C). 
 

 This ratio is an important characteristic of a transmission 
line, called its Characteristic Impedance Z0. 
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0 0
0

0 0

R j LV VZ
I I G j C

+ −

+ −

+−
= =

+
ω
ω

 

 
 
We can therefore describe the current and voltage along a 
transmission line as: 
 
 

0 0

0 0

0 0

z z

z z

V ( z ) V e V e

V VI ( z ) e e
Z Z

γ γ

γ γ

+ − − +

+ −
− +

= +

= −

 

 
 
or equivalently: 
 
 

0 0 0 0

0 0

z z

z z

V ( z ) Z I e Z I e

I ( z ) I e I e

γ γ

γ γ

+ − − +

+ − − +

= −

= +

 

 

 

Note that instead of characterizing a transmission line with real 
parameters R, G, L, and C, we can (and typically do!) describe a 
transmission line using complex parameters Z0 and γ . 
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The Complex Propagation 
Constant γ 

 
Recall that the current and voltage along a transmission line 
have the form: 
 

0 0

0 0

0 0

z z

z z

V ( z ) V e V e

V VI ( z ) e e
Z Z

γ γ

γ γ

+ − − +

+ −
− +

= +

= −

 

where Z0 and γ are complex constants that describe the 
properties of a transmission line.  Since γ is complex, we can 
consider both its real and imaginary components. 
 

( R j L)( G j C )
j

ω ω
α β

γ + +

+

=  

 
where { } { } and Re Imα βγ γ= = .  Therefore, we can write: 
 

z j z z jBze e e e− − + − −= =( )γ α β α  
 

Since j ze − β =1, then ze −α alone determines the magnitude of 
ze −γ .   
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I.E., z ze e− −=γ α . 
 
 
 
 
 
 

 
 
 
 
 
 
Therefore, α expresses the attenuation of the signal due to the 
loss in the transmission line. 
 
Since ze −α  is a real function, it expresses the magnitude of 

ze −γ only.  The relative phase ( )zφ  of ze −γ is therefore 
determined by ( )j z j ze eβ φ− −=  only (recall 1j ze − =β ).   
 
From Euler’s equation: 
 

j z j ze e z j zφ β β β= = +( ) cos( ) sin( )  
 

Therefore, βz represents the relative phase ( )zφ of the 
oscillating signal, as a function of transmission line position z.  
Since phase ( )zφ is expressed in radians, and z is distance (in 
meters), the value β must have units of : 
 

radians     
meterz

=
φβ  

z 

ze −α  
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The wavelength λ  of the signal is the distance 2z π∆  over which 
the relative phase changes by 2π  radians. So: 
 

2 22 ( )- ( ) = =z z z zπ ππ φ φ β β λ= + ∆ ∆  
 
or,  rearranging: 

2
=

πβ
λ

 

 
Since the signal is oscillating in time at rate   rad secω , the 
propagation velocity of the wave is:  
 

m    
2 sec secp

rad mv f
rad

⎛ ⎞= = = =⎜ ⎟
⎝ ⎠

ω ωλ λ
β π

 

 
where f is frequency in cycles/sec. 
 
Recall we originally considered the transmission line current and 
voltage as a function of time and position 
(i.e., ( ) and ( )v z t i z t, , ).  We assumed the time function was 
sinusoidal, oscillating with frequency ω : 
 

{ }

{ }

j t

j t

v z t V z e

i z t I z e

=

=

ω

ω

( , ) Re ( )

( , ) Re ( )
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Now that we know V(z) and I(z), we can write the original 
functions as: 
 

{ }0 0

0 0

0 0

j z t j z tz z

j z t j z tz z

v z t V e e V e e

V Vi z t e e e e
Z Z

β ω β ωα α

β ω β ωα α

− − ++ − −

+ +
− − +−

= +

⎧ ⎫
= −⎨ ⎬

⎩ ⎭

( ) ( )

( ) ( )

( , ) Re

( , ) Re

 

 
The first term in each equation describes a wave propagating in 
the +z direction, while the second describes a wave propagating 
in the opposite (-z) direction. 
 
 
 
 
 
 
 
Each wave has wavelength: 
 

2πλ
β

=  

 
And velocity: 
 

pv ω
β

=  

 
 

0Z γ, 0
( )z j z tV e eα β ω+ − − −

0
j z tzV e e β ωα +− ( )

z 
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Line Impedance  
 
Now let’s define line impedance ( )Z z , which is simply the 
ratio of the complex line voltage and complex line current: 
 
 

( ) ( )
( )

V zZ z
I z

=  

 
 
 

 
 
 
 
 
A: NO!  The line impedance ( )Z z  is (generally speaking) 
NOT the transmission line characteristic impedance Z0 !!! 
 
Æ It is unfathomably important that you understand 

this!!!! 
 
To see why, recall that: 
 
 

( ) ( ) ( )V z V z V z+ −= +  

Q:  Hey! I know what this is! The 
ratio of the voltage to current is 
simply the characteristic 
impedance Z0, right ??? 
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And that: 

( ) ( ) ( )
0

V z V zI z
Z

+ −−
=  

Therefore: 
 
 

( ) ( )
( )

( ) ( )
( ) ( )0 0

V z V z V zZ z Z Z
I z V z V z

+ −

+ −

⎛ ⎞+
= = ≠⎜ ⎟−⎝ ⎠

 

 
 
Or, more specifically, we can write: 
 

( ) 0 0
0

0 0

z z

z z
V e V eZ z Z
V e V e

+ − − +

+ − − +

⎛ ⎞+
= ⎜ ⎟−⎝ ⎠

γ γ

γ γ  

 
 
 
 
 
 
 
A:  Yes! That is true! The ratio of the voltage to current for 
each of the two propagating waves is 0Z± .  However, the ratio 
of the sum of the two voltages to the sum of the two currents 
is not equal to Z0  (generally speaking)! 
 
This is actually confirmed by the equation above.  Say that 

( ) 0V z− = , so that only one wave ( ( )V z+ ) is propagating on 
the line. 

Q:  I’m confused!  Isn’t: 
 

( ) ( ) 0V z I z Z+ + =  ??? 



1/20/2005 Line Impedance.doc 3/3 

Jim Stiles The Univ. of Kansas Dept. of EECS 

In this case, the ratio of the total voltage to the total 
current is simply the ratio of the voltage and current of the 
one remaining wave—the characteristic impedance Z0 ! 
 

( ) ( )
( )

( )
( )

( )
( )

( )0 0 (when )V z V z V zZ z Z Z V z
I z V z I z

+ +
+

+ +

⎛ ⎞
= = = =⎜ ⎟

⎝ ⎠
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A:  Exactly!  Moreover, note that characteristic impedance Z0 

is simply a number, whereas line impedance ( )Z z  is a function 
of position (z )  on the transmission line. 

Q:  So, it appears to me that characteristic 
impedance Z0 is a transmission line 
parameter, depending only on the 
transmission line values R, G, L, and C. 
 
Whereas line impedance is ( )Z z  depends 
the magnitude and phase of the two 
propagating waves ( )V z+  and ( )V z− --values 
that depend not only on the transmission 
line, but also on the two things attached to 
either end of the transmission line!   
 
Right !? 
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The Reflection Coefficient 
 
So, we know that the transmission line voltage ( )V z and the 
transmission line current ( )I z  can be related by the line 
impedance ( )Z z : 
 

( ) ( ) ( )V z Z z I z=  
 
or equivalently: 

( ) ( )
( )

V zI z
Z z

=  

 
Expressing the “activity” on a transmission line in terms of 
voltage, current and impedance is of course perfectly valid.  
However, let us look closer at the expression for each of 
these quantities: 
 
 

( ) ( ) ( )V z V z V z+ −= +  
 
 

( ) ( ) ( )
0

V z V zI z
Z

+ −−
=  

 
 

( ) ( ) ( )
( ) ( )0

V z V zZ z Z
V z V z

+ −

+ −

⎛ ⎞+
= ⎜ ⎟−⎝ ⎠
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It is evident that we can alternatively express all “activity” on 
the transmission line in terms of the two transmission line 
waves ( )V z+  and ( )V z− .  
 
In other words, we can describe transmission line activity in 
terms of: 

( )V z+  and ( )V z−  
 
instead of: 

( )V z  and ( )I z  
 

Q: But ( )V z  and ( )I z  are related by line impedance ( )Z z : 
 

( ) ( )
( )

V zZ z
I z

=  

 
How are ( )V z+  and ( )V z−  related? 
 
A: Similar to line impedance, we can define a new parameter—
the reflection coefficient ( )zΓ --as the ratio of the two 
quantities: 
 
 

( ) ( )
( )

V zz
V z

−

+Γ  
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More specifically, we can express ( )zΓ  as: 
 

( ) 20 0

0 0

z
z

z
V e Vz e
V e V

γ
γ

γ

− + −
+

+ − +Γ = =  

 
Note then, the value of the reflection coefficient at z =0 is: 
 

( ) ( )2 00

0

0

0

0 Vz e
V
V
V

γ
−

+
+

−

+

Γ = =

=
 

 
We define this value as 0Γ , where: 
 
 

( ) 0
0

0

0 Vz
V

−

+Γ Γ = =  

 
 

 
Note then that we can alternatively write ( )zΓ  as: 
 
 

( ) 2
0

zz e γ+Γ = Γ  
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Thus, we now know:  
 

( ) ( ) ( )V z z V z− += Γ  
 

and therefore we can express line current and voltage as: 
 

 
( ) ( ) ( )( )1V z V z z+= + Γ  

 

( ) ( ) ( )( )
0

1V zI z z
Z

+

= − Γ  

 
 
Or, more explicitly, since 0 0 0V V− += Γ : 
 
 

( ) ( )0 0
z zV z V e eγ γ+ − += + Γ  

 

( ) ( )0
0

0

z zVI z e e
Z

γ γ
+

− += − Γ  

 
 
More importantly, we find that line impedance 

( ) ( ) ( )Z z V z I z=  is: 
 
 

( ) ( )
( )0

1
1

zZ z Z
z

⎛ ⎞+ Γ
= ⎜ ⎟− Γ⎝ ⎠
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Based on circuits experience, you might be tempted to always 
use the first relationship. However, we will find that it is also 
very useful (as well as simple) to describe activity on a 
transmission line in terms of the second relationship—in terms 
of the two propagating transmission line waves! 

Look  what happened—the line impedance can be completely 
and explicitly expressed in terms of reflection 
coefficient ( )zΓ !  
 
Or, rearranging, we find that the reflection coefficient 
( )zΓ can likewise be written in terms of line impedance: 

 
 

( ) ( )
( )

0

0

Z z Zz
Z z Z

−
Γ =

+
 

 
 
Thus, the values ( )zΓ  and ( )Z z  are equivalent parameters—
if we know one, then we can determine the other! 
 
Likewise, the relationships: 
 

( ) ( ) ( )V z Z z I z=  
and: 
 

( ) ( ) ( )V z z V z− += Γ  
 

are equivalent relationships—we can use 
either when describing an transmission line.   
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The Lossless  
Transmission Line 

 
Say a transmission line is lossless (i.e., R=G=0); the transmission 
line equations are then significantly simplified! 
 
Characteristic Impedance 
 

0
R j LZ
G j C
j L
j C
L
C

ω
ω

ω
ω

+
=

+

=

=

 

 
Note the characteristic impedance of a lossless transmission 
line is purely real  (i.e., Im{Z0} =0)! 
 
Propagation Constant 
 

2

( R j L)( G j C )

j

( j L)( j C )
LC

LC

+ +

=

=

=

= −

ω ωγ

ω ω

ω

ω

 

 
The wave propagation constant is purely imaginary! 
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In other words, for a lossless transmission line: 
 

0   and   LCα β ω= =  
 

Voltage and Current  
 
The complex functions describing the magnitude and phase of 
the voltage/current at every location z along a transmission line 
are for a lossless line are: 
 

0 0

0 0

0 0

j z j z

j z j z

V ( z ) V e V e

V VI ( z ) e e
Z Z

β β

β β

+ − − +

+ −
− +

= +

= −

 

 
Line Impedance 
 
The complex function describing the impedance at every point 
along a lossless transmission line is: 
 

0 0
0

0 0

j z j z

j z j z
V e V eV ( z )Z ( z ) Z

I ( z ) V e V e

β β

β β

+ − − +

+ − − +

+
= =

−
 

 
Reflection Coefficient 
 
The complex function describing the reflection at every point 
along a lossless transmission line is: 
 

( ) 20 0

0 0

j z
j z

j z
V e Vz e
V e V

β
β

β

+− −
+

−+ +Γ = =  
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Wavelength and Phase Velocity 
 
We can now explicitly write the wavelength and propagation 
velocity of the two transmission line waves in terms of 
transmission line parameters L and C: 
 

2 1
f LC

πλ
β

= =  

 
1

pv
LC

ω
β

= =  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Unless otherwise indicated, we will use the lossless equations to 
approximate the behavior of a low-loss transmission line. 
 

Q: Oh please, continue wasting my 
valuable time.  We both know that a 
perfectly lossless transmission line 
is a physical impossibility. 

A:  True!  However, a low-loss line is 
possible—in fact, it is typical!  If 
R Lω  and G Cω , we find that the 
lossless transmission line equations are 
excellent approximations!  
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The lone exception is when determining the attenuation of a 
long transmission line.  For that case we will use the 
approximation: 

0
0

1
2

R GZ
Z

α
⎛ ⎞

≈ +⎜ ⎟
⎝ ⎠

 

where 0Z L C= . 
 
 

A summary of lossless transmission line equations 
 

0
LZ
C

=               j LC=γ ω  

 
0 0

0 0
0 0

j z j z j z j zV VV ( z ) V e V e I ( z ) e e
Z Z

β β β β
+ −

− + − ++ −= + = −  

 
0 0

0
0 0

j z j z

j z j z
V e V eZ ( z ) Z
V e V e

β β

β β

− ++ −

− ++ −

+
=

−
 

 
 

( ) ( )0 0
j z j zV z V e V z V eβ β− ++ + − −= =  

 

( ) 20

0

j zVz e
V

β
−

+
+Γ =  

 

 LCβ ω=              1
f LC

λ =              1
pv

LC
=     


