2.3 - The Terminated,
Lossless Transmission Line

Reading Assignment: pp. 57-64

We now know that a lossless transmission line is completely
characterized by real constants Z, and 3.

Likewise, the 2 waves propagating on a fransmission line are
completely characterized by complex constants I" and I".

Q: Z, and B are determined from L, C, and w. How do we
find V- andVy ?

A:
Every ftransmission line has 2 "boundaries”

1)
2)

Typically, there is a source at one end of the line, and a load
at the other.

9

Let's apply the load boundary condition!



HO: The Terminated, Lossless Transmission Line

HO: Special Values of Load Impedance

Q: So the line impedance at the end of a line must be load
impedance Z, (i.e., Z(z=2z,)=2Z,) what is the line
impedance at the beginning of the line (i.e.,

Z(z=zL—£)=?)?
A:

HO: Transmission Line Input Impedance

Example: Input Impedance

Q: For agiven Z, we can determine an equivalent I',. Is
there an equivalent T, for each Z;, ?

A: HO: The Reflection Coefficient Transformation

Q: 5o, the purpose of the transmission line is to transtfer
E.M. energy from the source to the load. Exactly how much
power is flowing in the transmission line, and how much is
delivered to the load?

A: HO: Power Flow and Return Loss

Note that we can specify a load with:



1)
2)
3)

HO: VSWR

Q: What happens if our transmission line is terminated by
something other than a load? Is our transmission line theory
still valid?

A: As long as a transmission line is connected to linear
devices our theory is valid. However, we must be careful to
properly apply the boundary conditions associated with each
linear devicel

Example: The Transmission Coefficient

Example: Applying Boundary Conditions




The Terminated. Lossless
Transmission Line

Now let's attach something to our transmission line. Consider a
lossless line, length 7, terminated with a load Z;.

I(2) I
o
+ +
V(2) Zo. B v, ;zL
4
__\
| | z
! I
z=2z -/ zZ =2

Q: What is the current and voltage at each and every point on
the transmission line (i.e., what is I (z) and V (z) for all points

zZwhere z, —-(<z<z 2?)?
A: To find out, we must apply boundary conditions!

In other words, at the end of the transmission line (z = z,)—
where the load is attached—we have many requirements that all
must be satisfied!



1. To begin with, the voltage and current (I(z=2z) and
V(z=2z)) must be consistent with a valid transmission line

solution:

V(z=2z)=V'(z=2)+V (z=2)

— I/t p~/BZ - ptJBz
= Vet + I e

W(z=2) WK(z=2)

T(z=z2)= -
(z=2z) Z Z

+ —_
L VLe—fﬂZL ] VLeJﬁ/ﬂZL
Zy Zy

2. Likewise, the load voltage and current must be related by

Ohm's law:
VL = ZL IL

3. Most importantly, we recognize that the values I'(z=2z2,),
V(z =2z,) and I, V, are not independent, but in fact are

strictly related by Kirchoff's Laws!




From KVL and KCL we find these requirements:

V(z=2)=VY
I(z=z)=1I,

These are the boundary conditions for this particular problem.

different boundary conditions—you must access each

! = Carefull Different transmission line problems lead to
problem individually and independently!

Combining these equations and boundary conditions, we find
that:

V=2, 1,
V(z=2)=2I(z=2z)

V' (z=2z)+ l/‘(z=zL)=é (V' (z=2)-V (z=2))

o

Rearranging, we can conclude:




Q: Hey wait as second! We earlier definedV~ (z)/V*(z) as
reflection coefficient I'(z). How does this relate fo the
expression above?

A: Recall that I'(z) is a function of transmission line position z.
The value V™ (z=2z,)/V*(z = z,) is simply the value of function
['(z) evaluated at z =z, (i.e., evaluated at the end of the line):

Z, -
+

N

=I'(z=2z)=

N
N

This value is of fundamental importance for the terminated
transmission line problem, so we provide it with its own special
symbol (T',) !

Q: Wait! We earlier determined that:

Z(z)-2Z,
r =
)= Z 2z,
so i1 would seem that:
B =F(z:z)=Z(z=zL)_Z°
‘ Y Z(z=2)+Z,

Which expression is correct??



A: They both arel It is evident that the two expressions:

:ZL_ZO
Z +2Z,

r, and r, =

are equal if:
Z(z=2z)=2,

And since we know that from Ohm's Law:

=Z(z=2z)

we find it apparent that the line impedance at the end of the
transmission line is equal to the load impedance:

Z(z=2z)=2,

The above expression is essentially another expression of the
boundary condition applied at the end of the transmission line.



Q: I'm confused! Just what are were we
trying to accomplish in this handout?

—

olOY -4
3=
o

e e T A

A: We are trying to find U 2) and I{2) when a
lossless transmission line is terminated by a
load Z;!

We can now determine the value of I in terms of |/ Since:

V (z=2) Ve’

I' = = .
fVi(z=2z) Wel

We find:
Vg = e, 1
And therefore we find:
U (2)=(e2 T, 1y e

V(z)=V [e‘fﬂz + (e‘zfﬂzﬁ FL) e”ﬂ"}

I(z)=

g |:e—J'ﬂ2 | ( g2 FL) e+jﬂ2}

where:

N
|
N

N
+
N



z, =0

Now, we can further simplify our analysis by arbitrarily
assigning the end point z; a zero value (i.e., z, =0):

I(2) I
O—_‘
V(2) Zo. B v, ;ZL
(
__\
| | i

If the load is located at z=0 (i.e., if z, =0), we find that:

V(z=0)=V"(z=0)+ V (z=0)
= I e /PO 4 + Y eg*/P0)
ads

I(z=0)=V° (z=0) K (z=0)

Z, Z,
W o) _ W iso
Z Z
-
Zo




Likewise, it is apparent that if z, =0, I', and Iy are the same:

V (z=0) I,
FL:F(Z:ZL):V+EZ_O;:[/O+ :FO
- 0
Therefore:
I, _§L_ZO =Ly
A

Thus, we can write the line current and voltage simply as:

V(z)= [e"”” + T, e”ﬂz]
[for z, =0]
Vo+

0

I(z)=2|e’”-T, e

Q: But, how do we determine V)" 2?

A: We require a second boundary condition to determine I/".

The only boundary left is at the other end of the ftransmission
line. Typically, a source of some sort is located there. This

makes physical sense, as something must generate the incident
wave |



Special Values of
Load Impedance

Let's look at some specific values of load impedance
Z, =R + jX, and see what happens on our transmission linel

1. 7z =2

In this case, the load impedance is numerically equal to the
characteristic impedance of the transmission line. Assuming
the line is lossless, then Z,is real, and thus:

R =2, and X =0

It is evident that the resulting load reflection coefficient is

zero:
FLZZZZO
Z, +Z, Z,+Z,

This result is very interesting, as it means that there is no
reflected wave I/~ (z)!

V—(z) 2JﬂZL1—w V+> +JBz

(e
( ZJﬂZL ) +Jﬂ2
o)



Thus, the total voltage and current along the transmission line
is simply voltage and current of the incident wave:

V(z)=V'(z)=V'e’*

I(2)=I (2)=2e "
0

Meaning that the line impedance is likewise numerically equal
to the characteristic impedance of the transmission line for
all line position z

V() et

Z(z)= = .
(z) I(Z) 0 '/()+2_J'BZ

And likewise, the reflection coefficient is zero at all points
along the line:

_V(z)_ 0 _

Vi(z) Vi(z)

I'(z)

We call this condition (when Z, = Z,) the matched condition,
and the load Z, = Z, a matched load.

2. 2,0

A device with no impedance is called a short circuit! T.E.:

R=0 and X, =0



In this case, the voltage across the load—and thus the
voltage at the end of the transmission line—is zero:

V=2 1I=0 and V(z=2)=0
Note that this does not mean that the current is zero!
I,=I(z=2)#0

For a short, the resulting load reflection coefficient is
therefore:
Z,-Zy, 0-Z,

= =-1
Z +Z, 0+2Z

L,

Meaning (assuming z, =0):

As a result, the total voltage and current along the
transmission line is simply:

V(Z) T Vo+ (e—jﬂz _ e+j,32) _] _J-2V0+ Sin(ﬂZ)

4

(e + &%) = % cos(Bz)
0

W

I(z)=

N

Meaning that the line impedance can likewise be written in
terms of a trigonometric function:



Z(2) =%=—jzo fan(z)

Note that this impedance is purely reactive. This means that
the current and voltage on the transmission line will be

everywhere 90° out of phase.

Hopefully, this was likewise apparent to you when you
observed the expressions for z) and I(2)!

Note at the end of the line (i.e., z =2z, =0), we find that
V(z=0)=-j2(" sin(0)=0

1'(2=O)=2VO

As expected, the voltage is zero at the end of the
transmission line (i.e. the voltage across the short). Likewise,
the current at the end of the line (i.e., the current through
the short) is at a maximum!

Finally, we note that the line impedance at the end of the
transmission line is:

Z(z=0)=-jZ,tan(0)=0

Just as we expected—a short circuit!



Finally, the reflection coefficient function is (assuming
z, =0)

V- (Z) — _[/c>+e+Jﬁz — _plhz

Vi(z) Wel®

I['(z)=

Note that for this case |I'(z)| =1, meaning that:

V(o) -

V' (z)

In other words, the magnitude of each wave on the
transmission line is the same—the reflected wave is just as
big as the incident wave!

3. Z, =

A device with infinite impedance is called an open circuit!

IE.:
R = and/or X, =zw

In this case, the current through the load—and thus the
current at the end of the transmission line—is zero:

Il
o

I, = and I(z=z)=0

NI=

Note that this does not mean that the voltage is zero!

V=V(z=2)#0



For an open, the resulting load reflection coefficient is:

z -z 7}
T, = fim £2%0 _ fim £L_1
Lo=fm 7z ~InZ

Meaning (assuming z, =0):
b =W

As a result, the total voltage and current along the
transmission line is simply (assuming z, =0):

V(z)=V (e’ +e7") =2 cos(pz)

I(z) =? (e -7 )=~ ZZVO sin(Bz)
0 0

Meaning that the line impedance can likewise be written in
terms of trigonometric function:

V(z)

T(2) = jZ,cot(pz)

Z(z)=——=

Again note that this impedance is purely reactive— l/(z) and
I(2) are again 90" out of phase!

Note at the end of the line (i.e., z=2z =0), we find that



I(z-0)=—j % sin(0)=0
Z,
As expected, the current is zero at the end of the

transmission line (i.e. the current through the open). Likewise,
the voltage at the end of the line (i.e., the voltage across the
open) is at a maximum!

Finally, we note that the line impedance at the end of the
Transmission line is:

Z(z=0)= jZ,cot(0)=w0
Just as we expected—an open circuit!
Finally, the reflection coefficient is (assuming z, =0):

V_ (Z) Vo+e+‘/ﬂz + Zﬂz
(Z) V+ (Z) l/()+e—Jﬁ’z

Note that likewise for this case |I'(z) =1, meaning again that:

V(2

V' (z)

In other words, the magnitude of each wave on the
transmission line is the same—the reflected wave is just as
big as the incident wave!



4. R =0

For this case, the load impedance is purely reactive (e.g. a

capacitor of inductor):
Z, =JX

Thus, both the current through the load, and voltage across
the load, are non-zero:

I,=I(z=2)=0 V=V(z=2)+0

The resulting load reflection coefficient is:

:ZL_ZO — JX, - <o

I
. Z, +Z, JX +2,

Given that Zpis real (i.e., the line is lossless), we find that
this load reflection coefficient is generally some complex
number.

We can rewrite this value explicitly in terms of its real and
imaginary part as:

X ~-Z, (X -Z5 [ 22, X,
') =% = 2 > | TJ 2 2
JX, + 2, X +Z; X+ 2,

Yuck! This isn't much help!



Let's instead write this complex valueT’, in ferms of its

magnitude and phase. For magnitude we find a much more
straightforward result!

L ; 7 2 2
‘J)(L + Zo‘ X+ 4

Its magnitude is one! Thus, we find that for reactive loads,
the reflection coefficient can be simply expressed as:

r,=e”
where
4| 22, X,
6. =tan {XZ ZZ}

We can therefore conclude that for a reactive load:
=" iy

As a result, the total voltage and current along the
transmission line is simply (assuming z, =0):

V(z)=W' (e’ +e e ’?)
] [/o+ e+j¢9r/2 (e—j(ﬂz+6’r/2) +e+j(,6’z+6’r/2))

=2l e’ cos(Bz +6,/2)



+

N

I(Z) =0 (g bz _ p+iPz
A |
W e (gm0 _ gritozsa)
<
2 e
=— W grins sin(fz+6,/2)
<

Meaning that the line impedance can again be written in ferms
of trigonometric function:

Z(z) =@:j20 cot(Sz +6./2)

I(z)

Again note that this impedance is purely reactive— l/(z) and
I(z) are once again 90° out of phasel

Note at the end of the line (i.e., z=2 =0), we find that
V(z=0)=2lcos (6 /2)

I(z=0)=-j 2;‘; sin (6./2)

0

As expected, neither the current nor voltage at the end of
the line are zero.

We also note that the line impedance at the end of the
transmission line is:



Z(z=0)=jz, cot(6:/2)
With a little trigonometry, we can show (trust mel) that:

)X

0

cot (6,2

and therefore:
Z(z=0)=jzZ,cot(6:./2)=j X, =2,
Just as we expected!

Finally, the reflection coefficient function is (assuming
z, =0):

Ra (2) l l/()+e+J9Fe+jﬂz __+j2(Bz+6:)2)
V(z) Welr

r(z)

Note that likewise for this case |I'(z)| =1, meaning once
again:
V(z)=

V' (z)

In other words, the magnitude of each wave on the
transmission line is the same—the reflected wave is just as
big as the incident wave!

Q: Gee, areactive load leads to results very similar to that
of an open or short circuit. Is this just coincidence?



A: Hardly! An open and short are in fact reactive loads—
they cannot absorb power (think about thisl).

Specifically, for an open, we find 6. =0, so that:
r,=e/” =1
Likewise, for a short, we find that 6. = 7, so that:

r,=e/*=-1

5. X =0

For this case, the load impedance is purely real (e.g. a

resistor):
Z =R

Thus, both the current through the load, and voltage across
the load, are non-zero:

I,=I(z=2z)=0 V=V(z=2)#0

The resulting load reflection coefficient is:

_Z,-Z, _R-Z,

I, e =
+Zy, R+Z,

Given that Zpis real (i.e., the line is lossless), we find that
this load reflection coefficient must be a purely real value!



In other words:

R-Z
Re T | = 0 Im{T, =0
elr}-472  Infr
The magnitude is thus:
R-Z
|FL|:‘,Q 0
+2Z,

whereas the phase 6. can take on one of two values:

O /f Re{l,}>0 (ie,ifR >Z)
6 =
7 if Re{l,}<0 (ie,ifR <Z)

For this case, the impedance at the end of the line must be
real (Z(z=2z,)=R). Thus, the current and the voltage at

this point are precisely in phase.

However, even though the load impedance is real, the line
impedance at all other points on the line is generally complex!

Moreover, the general current and voltage expressions, as
well as reflection coefficient function, cannot be further
simplified for the case where Z, =R .



Q: Why is that? When the load was purely imaginary
(reactive), we where able to simply our general expressions,
and likewise deduce all sorts of interesting results/

A: Truel And here's why. Remember, a lossless transmission
line has series inductance and shunt capacitance only. In
other words, a length of lossless transmission line is a purely
reactive device (it absorbs no energy!).

* If we attach a purely reactive load at the end of the
transmission line, we still have a completely reactive system
(load and transmission line). Because this system has no
resistive (i.e., real) component, the general expressions for
line impedance, line voltage, etc. can be significantly
simplified.

* However, if we attach a purely real load to our reactive
Transmission line, we now have a complex system, with both
real and imaginary (i.e., resistive and reactive) components.
This complex case is exactly what our general expressions
already describes—no further simplification is possible!

5. Z, =R +jX

Now, let's look at the general case, where the load has both a
real (resitive) and imaginary (reactive) component.

Q: Haven't we already determined all the general
expressions (eq., T, V(z),I(z),Z(z),T(z)) for this general
case? Is there anything else left to be determined?



A: There is one last thing we need to discuss. It seems
trivial, but its ramifications are very important!

For you see, the "general” case is not, in reality, quite so
general. Although the reactive component of the load can be
either positive or negative (-0 < X, <), the resistive

component of a passive load must be positive (R, > 0)—there's
no such thing as negative resistor!

This leads to one very important and useful result. Consider
the load reflection coefficient:

_ 44
Z + Z,

= ('QL +j)(L)_ZO
(R + jX,)+ Z,

B (R _Zo)+j)(L
(R + Zo)+ X,

I,

Now let's look at the magnitude of this value:



‘(RA Z, +JX
(

_|
(R
(Rf 2R, Z, +ZZ)+X2
(RP+2R Z,+ 22 )+ X
|
K

R +Z5 + X})-2R Z,
F+ Zg + XP)+2R Z,

It is apparent that since both R and Z, are positive, the

numerator of the above expression must be less than (or equal
to) the denominator of the above expression.

- In other words, the magnitude of the load reflection
coefficient is always less than or equal to one!

r,|<1 (for R >0)

Moreover, we find that this means the reflection coefficient
function likewise always has a magnitude less than or equal to
one, for all values of position z.

C(z)<1 (forall 2)



Which means, of course, that the reflected wave will always
have a magnitude less than that of the incident wave
magnitude:

V- (z) <

Vi (z) (forall 2)

We will find out later that this result is consistent with
conservation of energy—the reflected wave from a passive
load cannot be larger than the wave incident on it.



Transmission Line
Input Impedance

Consider a lossless line, length 7, terminated with a load Z;.

1(2) I
o
+ +
V(2) Zo. B v, Z
o
| ¢ |
zZ =/ z=0

Let's determine the input impedance of this linel
Q: Just what do you mean by input impedance?

A: The input impedance is simply the line impedance seen
at the beginning (z = —¢) of the fransmission line, i.e.:

V(z=-/)

Z’”:Z(z:_f):]‘(z:_g)

Note Z;, equal to neither the load impedance Z; nor the
characteristic impedance Zp!

Z,#Z and Z #Z,

n



To determine exactly what Z;, is, we first must determine the
voltage and current at the beginning of the transmission line
(z =-1).

V(z=-1)=V[e"" + T, e ]

I(z=-1)= VZO (e - T, e’ ]
0
Therefore:
" I(z=-t) °le-T,e

We can explicitly write Z, in terms of load Z; using the
previously determined relationship:

£, -4

I,
Z + Z,

Combining these two expressions, we get:

(ZL + ZO)e-Fjﬂﬁ + (ZL - Zo)e_‘/ﬂé
(ZL + Zo)eUW T (ZL - Zo)e‘f/”
ZL (e+jﬂé i e—jﬂf) 4 ZO (e+jﬁ£ _ e—jﬁg)
ZL (e+./'ﬂ€ + e—jﬂf) — Zo (e+jﬂ€ — e_Jﬂg)

Z, = Z,

n

Now, recall Euler's equations:

e/’ =cos Bl + j sin B¢
e/’ =cos Bl - j sin Bt



Using Euler's relationships, we can likewise write the input
impedance without the complex exponentials:

il Z, cos il + j Z, sin BI

_ > Z, +J Z, tan B/
\Z, +j Z tan ¢

P ZO[ZL cos Bl + J £, sunﬁfj

Note that depending on the values of g, Z, and 7, the input

impedance can be radically different from the load impedance
Z

Special Cases

Now let's look at the Z, for some important load impedances
and line lengths.

- You should commit these results to memory!

1. z:%

If the length of the transmission line is exactly one-half
wavelength (¢ = 1/2), we find that:

meaning that:

cosfl=cosz=-1 and sinpl=sinz=0



and therefore:

> -z Z, cos Bl + j Z, sin pl
" 70 Z cos Bl + j Z, sinpl

_ > Z, (-V)+/Z (0)
Nz (-D+j Z (0)

In other words, if the transmission line is precisely one-half
wavelength long, the input impedance is equal to the load
impedance, regardless of Z; or B.

o

Z/n=ZL Zo,ﬂ ZL

2. f:%

If the length of the transmission line is exactly one-quarter
wavelength (¢ = 1/4), we find that:

2 T
p =12
p A 2

IR

meaning that:

cos fl =cos 7/2=0 and  sin Bl =sin z/2 =1



and therefore:

P Z, cos Bl + j Z, sin pl
" T Z cos Bl + j Z, sinpi

=Z ZL (O)+J ZO (1)
N0+ Z, ()

In other words, if the transmission line is precisely one-quarter
wavelength long, the input impedance is inversely proportional to
the load impedance.

Think about what this means! Say the load impedance is a short
circuit, such that Z, =0. The input impedance at beginning of

the 1/4 transmission line is therefore:

Z = | This is an open circuit! The quarter-wave transmission
line transforms a short-circuit intfo an open-circuit—and vice

versal o o—
Z/ﬂ =Y ZO' ﬂ Z, =0
o o—i
0= A



If the load is numerically equal to the characteristic impedance
of the transmission line (a real value), we find that the input
impedance becomes:

Z, cospl+ j Z, sin Bl
" Z, cos Bl + j Z, sin Bt
Z, cos Bl + j Z, sin pl
Z, cosfBl+ j Z, sin Bl

In other words, if the load impedance is equal to the
transmission line characteristic impedance, the input impedance
will be likewise be equal to Z, regardless of the transmission
line length /.

o
Z, ;Zo Z,, B 2,27,
o
/
4.7, ~jX

If the load is purely reactive (i.e., the resistive component is
zero), the input impedance is:



Z, cos Bl + j Z, sin pl
Z, cos Bl + Jj Z sin Bl

J X cospl+ jZ, sinpl
Z, cos Bl + j° X, sin Bt

_ iz X, cos pl+ Z, sin Bl
—J %o Z, cos 3! — X, sin ¢

In other words, if the load is purely reactive, then the input
impedance will likewise be purely reactive, regardless of the
line length /.

o —
Z, =|J' X 2. P ;ZL-"/XL
o Pt

/

Note that the opposite is not true: even if the load is purely
resistive (Z; = R), the input impedance will be complex (both
resistive and reactive components).

Q: Why is this?

A:



h. I« A

If the transmission line is electrically small—its length 7 is
small with respect to signal wavelength 1--we find that:

2r /¢
=L 225 %0
Pr== i

and thus:
cos ff=cos0=1 and sinpB/=sin0=0

so that the input impedance is:

> _ 7 Z cospl+ jZ,sinpl
" TN Z, cospl+j Z, sinpl

L (Zm+jZ,0
°\ Z,()+/ Z )

In other words, if the transmission line length is much smaller
than a wavelength, the input impedance Z, will always be equal

to the load impedance Z, .

This is the assumption we used in all previous circuits courses
(e.g., EECS 211, 212, 312, 412)! In those courses, we assumed
that the signal frequency o is relatively low, such that the
signal wavelength 1 is very large (1> ¢).



Note also for this case ( the electrically short transmission
line), the voltage and current at each end of the transmission
line are approximately the same!

V(z=-0)=V(z=0) and I(z=-0)=I(z=0) if /<A

If ¢ < A, our "wire" behaves exactly as it did in EECS 211 |



Example: Input Impedance

Consider the following circuit:

Ln Zo=1

%g:%ﬁ

If we ignored our new p-wave knowledge, we might erroneously
conclude that the input impedance of this circuit is:

2
. M ju i
Z, = £
VT3 Ij1+j2

Therefore:
| -J3(2+1+ 42) _6-49

= =2.7- /2.1
-J3+2+1+ 42 3-J J

n

Of course, this is not the correct answer!

We must use our transmission line theory to determine an
accurate value. Define Z; as the input impedance of the last

section:
7 =
Z, Z,=2.0 g
ﬁ1+_j2

efz%%



we find that Z;is:

7 _ 7 Z, cosfBl+ j Z,sinpBl
b TN Zycos g+ j Z, sin gl

(1+j2) cos(7/y )+ j 2 sin(7/)
2cos(7)+ j(L+2) sin(7)
> 1+j4j

J
=82

Therefore, our circuit now becomes:

——

Z = L — ~1. 2 Z =8-j2
n ZO 1 _J3 Zo 15 . J
65212% eg:/u%

Note the resistor is in series with impedance Z;. We can
combine these two into one impedance defined as Z

Z,=2+7,=2+(8-j2)=10- j2




Now let's define the input impedance of the middle transmission
line section as Z3:

Z

Note that this transmission line is a quarter wavelength
(/= /% ). This is one of the special cases we considered earlier!

The input impedance Z; is:

=0.21+ 40.043

Thus, we can further simplify the original circuit as:

mmm——) >
LL fl] Z, =021+ j0.043
_J3

N
I
Il
I

Now we find that the impedance Z; is parallel to the capacitor.
We can combine the two impedances and define the result as
impedance Z:



Z, =-/3|(0.21+ j0.043)

~j3(0.21+ j0.043)

~_j3+0.21+,0.043
~0.22+j0.028

Now we are left with this equivalent circuit:

Z, =022+ j0.028

Note that the remaining transmission line section is a half
wavelength! This is one of the special situations we discussed in
a previous handout. Recall that the input impedance in this case
is simply equal to the load impedance:

' =Z,=2,=0.22+j0.028

Whew! We are finally done. The input impedance of the original
circuit is:

> Z =022+ 70028

n



Note this means that this circuit:

0.22
Z =

n

0.22+ ;0.028 j0.028

and this circuit:

z, =
0.22 + j0.028

are precisely the same! They have exactly the same impedance,
and thus they "behave” precisely the same way in any circuit
(but only at frequency w,!).



The Reflection Coefficient

Transformation

The load at the end of some length of a tfransmission line (with
characteristic impedance Z,) can be specified in ferms of its
impedance Z; or its reflection coefficient I';.

Note both values are complex, and either one completely
specifies the load—if you know one, you know the other!

Recall that we determined how a length of fransmission line
transformed the load impedance into an input impedance of a
(generally) different value:




where:

> -z Z, cospl+ j Z, sin Bl
" 70 Z cos L+ j Z, sinpl

_ > Z, +J Z, tan B/
"\ Z, +j Z tan ¢

Q: Say we know the load in terms of its reflection coefficient.
How can we express the input impedance in terms its reflection
coefficient (call thisT, )?

A: Well, we could execute these three steps:

1. ConvertI, to Z;:

1+T
ZL:Z"(l—rLj
L

2. Transform Z; down the line to Z,:

> _ > Z, cospl+ j Z,sinpl
" TN Z cospl+ j Z, sinpi



3. Convert Z, toI';,:

Q: VYikes! This is a ton of complex arithmetic—isn't there an
easier way?

A: Actually, there is!

Recall in an earlier handout that the input impedance of a
transmission line length ¢, terminated with a load T, is:

V(Z=—E) eV LT e /P
z Az="l) e +T,e”
n I(Z=—f) O(e”/%_rle‘/ﬂg

Note this directly relates I', to Z;, (steps 1 and 2 combined!).

If we directly insert this equation into:

. = Z:h _ZO
" Z,+Z,

we get an equation directly relating ', fo I, :



4L Zo (e+./ﬁf 4 FL e—./ﬂf)_(e+./ﬂf T FL e—.//”)
in — Zo (e+jﬂz i rLe—jﬁZ)+(e+j,b’Z — rLe—jﬂz)
2r,e’”
=1 e /P g /P

L -Jept
-T, e

Q: Hey! This result looks familiar. Haven't we seen something
like this before?

A: Absolutely! Recall that we found that the reflection
coefficient function I'(z) can be expressed as:

I'(z)=T,e&"?
Now, for a lossless line, we know that y = j 5, so that:
I(z)=T,e’*”
Evaluating this function at the beginning of the line (i.e., at
z=2z-l)

[(z=z —()=T,e’?"*"

— FO eJZﬂzL e_\/zﬂe

But, we recognize that:

T,e/* =T (z=2,)=T,



And so:
F(z =2z, - g) — ro e.jzﬂzL e—j2ﬁ€

_ -Jjap!
-T, e

Thus, we find that ', is simply the value of function I'(z)
evaluated at the line input of z=2, -/ |

r,=T(z=z,-0)=T,e’*"

n

Makes sense! After all, the input impedance is likewise simply
the line impedance evaluated at the line input of z=2 - ¢:

Z,=Z(z=2z-1)

n

It is apparent that from the above expression that the
reflection coefficient at the input is simply related to I', by a

phase shift of 24¢.

In other words, the magnitude of ', is the same as the
magnitude of T, !

Ta|=|T, ‘ej(er_zm)
=" (1)
=Ir,

If we think about this, it makes perfect sense!



Recall that the power absorbed by the load I, would be:

n

Recall, however, that a lossless transmission line can absorb no
power! By adding a length of transmission line to load I'; , we
have added only reactance. Therefore, the power absorbed by
load T, is equal o the power absorbed by I';:

hL =P,
+2 +2
(i)=Y )
1-|r, " =1-|r,[




Thus, we can conclude from conservation of energy that:

1_‘/'/7

F |F L|
Which of course is exactly the result we just found!

Finally, the phase shift associated with transforming the load
I, down a transmission line can be attributed to the phase shift
associated with the wave propagating a length 7 down the line,
reflecting from load ', , and then propagating a length ¢ back up
the line:

#— .

Zy. B [ \=e T ,e ;FL

—— O ——— |

) ¢=pl g

To emphasize this wave interpretation, we recall that by
definition, we can write T',, as:

Vi (z=2z-1)

T, :F(Z:ZL_E):V+(Z=ZL—€)

n

Therefore:

V(z=z,-()=T, V' (z=2-1)

=e'T, eV (z=2-1)



Power Flow and
Return Loss

We have discovered that two waves propagate along a
transmission line, one in each direction (V*(z) and V™ (z)).

V+ -Jpz +/pz
I(z) =Z° (e -T,e"] I
_ 0 s

+

The result is that electromagnetic energy flows along the
transmission line at a given rate (i.e., power).

Q: How much power flows along a transmission line, and
where does that power go?

A: We can answer that question by determining the
power absorbed by the load!



The time average power absorbed by an impedance Z; is:

1 .
Pabs ZERe{VL IL }

-2 Re{V(z=0)I(z=0)

L o) (e -]
v [

L ZOZO Re{l—(rj —ri)—\rl\z}
vl

T 2020 (t-Ir.f)

The significance of this result can be seen by rewriting the
expression as:

2
7 2
aszZZo(l_‘rL‘ )
RAINAY
22, 227,
- VO+2_‘[/O_2
22, 27,

The two terms in above expression have a very definite physical
meaning. The first ferm is the time-averaged power of the
wave propagating along the transmission line toward the load.



We say that this wave is incident on the load:

Likewise, the second term of the A, equation describes the
power of the wave moving in the other direction (away from
the load). We refer to this as the wave reflected from the
load:

2

A4
27, 27,

‘2

'Dr'ef:R: :‘rLzenc

Thus, the power absorbed by the load is simply:

Pbsze

a nc

- e'ef

or, rearranging, we find:

p

nc

= Pabs + 'Dref
This equation is simply an expression of the conservation of
energy !

It says that power flowing toward the load (#;,) is either
absorbed by the load (£,ss) or reflected back from the load

(’D r'ef)-



/D/'nc P ref Z

Note that if \FL\Z =1, then P, .= P.r, and therefore no power is
absorbed by the load.

This of course makes sense !

The magnitude of the reflection coefficient (|T',|) is equal to

one only when the load impedance is purely reactive (i.e., purely
imaginary).

Of course, a purely reactive element (e.g., capacitor or inductor)
cannot absorb any power—all the power must be reflected!

Return Loss

The ratio of the reflected power to the incident power is known
as return loss. Typically, return loss is expressed in dB:

nc

R.L. = —10 Jog,, {%"} = -10 /og,, |1“L|2



For example, if the return loss is 10dB, then 10% of the
incident power is reflected at the load, with the remaining 90%
being absorbed by the load—we "lose” 10% of the incident
power

Likewise, if the return loss is 30dB, then 0.1 % of the incident
power is reflected at the load, with the remaining 99.9% being
absorbed by the load—we "lose” 0.1% of the incident power.

Thus, a larger numeric value for return loss actually indicates
less lost power! Anideal return loss would be ««dB, whereas a
return loss of O dB indicates that |I',|=1--the load is reactive!



VSWR

Consider again the voltage along a terminated transmission line,
as a function of position z:

V(z)= VW [e??”+ T, e ]

Recall this is a complex function, the magnitude of which
expresses the magnitude of the sinusoidal signal at position Z,
while the phase of the complex value represents the relative
phase of the sinusoidal signal.

Let's look at the magnitude only:

|V (2)l= | V| |le? + T, e™"|
= le?||1+ T, e"/?#?|

:| VO+||1+ FL e+j2ﬂz|

ICBST the largest value of |V (2)| occurs at the location z
where:
r,e”’*?=Ir,|+ /0

while the smallest value of |V (2)|loccurs at the location z

where:
r,e’*” =-Ir,|+ jO



As a result we can conclude that:

V(2] =

max

l/o+

(T+]r,))

V(2),, =W

(L-Ir.)

The ratio of |V (z) _ to [V(z)| . is known as the Voltage
Standing Wave Ratio (VSWR):

. “/ (z)‘max _ 1+ |FL|

= \V(z)\mm =12 |FL| 1<VSWR < o

Note if |[',|=0 (i.e., Z, =Z,), then VSWR = 1. We find for this

case.

V(2) e =V (2, =

min

Vo+

max

In other words, the voltage magnitude is a constant with
respect to position z.

Conversely, if [T,|=1 (i.e., Z, = jX), then VSWR = «. We find
for this case:

V(z) =0 and  [V(2)| =2

min max

l/o+

In other words, the voltage magnitude varies greatly with
respect to position z.



As with return loss, VSWR is dependent on the magnitude of I',
(i.e, |TL]) only |

| U2)| A

Az =%,
< >

I l/(z)lma;

| V(Z)|mm_




The Transmission
Coefficient T

Consider this circuit:

I(2) IA2)
Vi(2) Z., B Z,, 5 Vo (2) Z=Z»

—lll
|

| Z
z=0
I.E., a tfransmission line with characteristic impedance Z;
transitions to a different transmission line at location z=0.
This second transmission line has different characteristic
impedance Z, (Z, # Z,) . This second line is terminated with a
load Z; = Z> (i.e., the second line is matched).

Q: What is the voltage and current along each of these
two transmission lines? More specifically, what are
Vo, Vor. Vop and I, 22

A: Since a source has not been specified, we can only
determine V;, ¥, and I/, in terms of complex constant

V. To accomplish this, we must apply a boundary
condition at z=0!



z<0

We know that the voltage along the first fransmission line is:
V(2)= Ve ™ + Y e”* [ for z < 0]

while the current along that same line is described as:

L (2) =%e‘fﬂ1’ - %e”ﬂlz [for z< 0]

z>0

We likewise know that the voltage along the second
Transmission line is:

V(2)= Vs e % + Y, e"?? [for z>0]

while the current along that same line is described as:

L (2) =%e‘”’22 - %e”ﬂzz [ for z> 0]
2 2

Moreover, since the second line is terminated in a matched
load, we know that the reflected wave from this load must be
zero:

v, (z)=V,e /™ =0



The voltage and current along the second transmission line is
thus simply:

V,(z)=W'"(z)=V;e’?? [for z>0]
L(2)=I; (2) =%e"”’2" [for z>0]
2

z=0

At the location where these two transmission lines meet, the
current and voltage expressions each must satisfy some specific
boundary conditions:

I{0) IA0)
— HENE
Z1. By Vi(0) V2(0) Z,. B, Z=Z;




while the second boundary condition comes from KCL, and states
that:

L(2=0)=L(2=0)

ﬁ e—jﬂl(o) _ ﬁ e"‘./ﬂl(o) — ﬁe—./ﬂz(o)
Z Z Z,
i Ve W
Z 4 4

We now have two equations and two unknowns (1{; and I;)! We
can solve for each in terms of I/, (i.e., the incident wave).

From the first boundary condition we can state:

Inserting this into the second boundary condition, we find an
expression involving only I; and I/ :

e Ve _ Ve
Z 7z Z
o V-V _ Ve
z z z
W _Ves, Vo
z "z z

Solving this expression, we find:

2Z,
V+: 2 V+
02 [ZE‘FZ'ZJOI




We can therefore define a transmission coefficient, which
relates I/, to V;:

e 25
S W Z4+Z,

Meaning that I, =T ;, and thus:

V(2)=W (2)=T W e/?* [for z>0]

We can likewise determine the constant If; in terms of ;. We
again start with the first boundary condition, from which we

concluded:
+ + -
Vs = Vo1 + Vs

We can insert this intfo the second boundary condition, and
determine an expression involving I/; and I; only:

o Ve Ve
z 7z z
o Ve Vi + Ve
z z  Z

1 1
=——V_
(A+ZJ“



Solving this expression, we find:

VOI{ZZ‘ZI]VO;

Z,+ 2

We can therefore define a reflection coefficient, which relates
Vor o 15

W S5
o &+ 4

This result should not surprise us!

Note that because the second transmission line is matched, its
input impedance is equal to Z;:

T RREN

e Z.5 222




and thus we can equivalently write the entire circuit as:

I(2)

We have already analyzed this circuitl We know that:

VOI :FL Vof

Z'Z_Z'l +
= Vo1
Z,+Z

Which is exactly the same result as we determined earlier!

The values of the reflection coefficient I'yand the transmission

coefficient Tpare not independent, but in fact are directly
related. Recall the first boundary expressed was:

Dividing this by I; :



Since Ty =V [V and T =V53 Vg

1+T, =T,

Note the result 7, =1+T is true for this particular circuit, and

therefore is not a universally valid expression for two-port
hetworks!



Example: Applying
Boundary Conditions

Consider this circuit:

IJ(ZJ) + V- Iz(Zz)
VW—
+ 2 L +
Zy, P Vi (z) V> (22) Zy. P
) D ——
I 21 I Z5
21 5 O 22 = O

I.E., Two ftransmissions of identical characteristic impedance
are connect by a series impedance Z; . This second line is
eventually terminated with a load Z; = Z; (i.e., the second line is

matched).

Q: What is the voltage and current along each of these
two transmission lines? More specifically, what are
Vo, Vor. Vop and Vg, 22

A: Since a source has not been specified, we can only
determine I/;, ¥, and I/, in terms of complex constant

;. To accomplish this, we must apply a boundary
conditions at the end of each linel



Z_1<0

We know that the voltage along the first fransmission line is:
V(z)=Vie % + Iy e’ [for z, <0]

while the current along that same line is described as:

I(z)=

Vor e /Pa _ Vor e*/Pa [for z <0]
Z, Z,

Zz>0

We likewise know that the voltage along the second
transmission line is:

V,(2,)= Ve’ + VY, e"P= [for z,>0]
while the current along that same line is described as:

I, (z) =;—°02e‘fﬂ"2 - %e”m [for z,>0]

Moreover, since the second line is terminated in a matched
load, we know that the reflected wave from this load must be
zero:

Vi (z)=W, e’/ =0



The voltage and current along the second transmission line is
thus simply:

V(2)=W (2)=V,e " [for z,>0]
L(z)=I1;(z)= ?2 e’z [for z,>0]

2

z=0

At the location where these two transmission lines meet, the
current and voltage expressions each must satisfy some specific
boundary conditions:

I0) . y - IA0)
—> A A -
) zZ I
Z,,p v (0) V> (0) Zy, B
— —
>z |
I I
Zl = O ZZ = O 4

The first boundary condition comes from KVL, and states that:

V(z=0)-1,Z,=V,(2=0)

A e /PO 4 Vi et/F ) _ LZ =W e/P )



the second boundary condition comes from KCL, and states that:

L(z=0)=1,

Yo s Yo grino _
Zy Zy

Vi ~Vor = Zo1,

while the third boundary condition likewise comes from KCL, and
states that:

I, =IL(z=0)

I = ﬁe—Jﬂ (0)
L Z,
ZOIL = Voz

Finally, we have Ohm’s Law:

Note that we now have four equations and four unknowns
(V. Vs, V., I,)! We can solve for each in terms of /] (i.e., the
incident wave).

For example, let's determine I/, (in terms of I/;). We combine
the and second boundary conditions to determine:

(Vi - Z,I,)
2y - I, (Zo + ZL) =5



And then adding in the third boundary condition:

Zl/OJ{—VZOJj (ZO+ZL)=VO§
2; =%;(ZZ°Z:ZL]
Thus, we find that 1, =7, I;:
il | 2z

W 2Z,+Z,

Now let's determine I, (in terms of ;).

Q: Why are you wasting our time? Don?
we already know that V,; =T, V,;, where:

_ ZL _Zo

Iy e
L+,

S

A: Perhaps. Humor me while I continue with our boundary
condition analysis.

We combine the and third boundary conditions to
determine:



Z,I,
Vor +Vor =1, (Zo +ZL)

And then adding the second boundary condition:

Voi +Vor =I,(Z + Z,)

Vii =,
%I+VOI=M(ZO+ZL)
Z,

A Z (22, + Z,
a(2)- (5

Thus, we find that I/; =T, V};, where:

1“0 K3 [/0; _ ZL
oy Z +2Z2,

Note this is not the expression:

[, # =%
Z, +Z,
This is a completely different problem than the
transmission line simply tferminated by load Z;. Thus, the
results are likewise different. This shows that you must
always carefully consider the problem you are attempting
to solve, and guard against using “shortcuts” with
previously derived expressions that may be inapplicable.




= This is why you must know why a correct answer is correct!

Q: But, isn't there some
way to solve this using our

e vious work?

/
s W\

A: Actudlly, there is!

An alternative way for finding T', =V, /V; is to determine the
input impedance at the end of the first transmission line:

Z
Zy, P Zin Zy, P
— —
- I
| <1 |
Z; = 0 Z, = 0 -
Note that since the second line is (eventually) terminated in a
matched load, the input impedance at the beginning of the
second line is simply equal to Z.
Z
Z,, B ZinF=Zo Z,,
— —
I 21 I Z7



Thus, the equivalent circuit becomes:

Z
Zy, B Zin Z
)
>z,
21 = O

And it is apparent that:
Z,=2Z,+2,

As far as the first section of transmission line is concerned, it
is terminated in a load with impedance Z, + Z,. The current and
voltage along this first fransmission line is precisely the same
as if it actually were!

I{z)

Z1+ Zp




Thus, we find that T, =V, /V;; , where:

Precisely the same result as before!

Now, one more point. Recall we found in an earlier handout that
T, =1+T,. But for this example we find that this statement is

not valid:

e =2(ZL+ZO)¢
Lo Zlyez T

Again, be careful when analyzing microwave circuits!

/

Q: But this seems so
difficult. How will I
know /¥ I have made a
mistake?

N— _/
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A: An important engineering tool that you must master is

commonly referred to as the "sanity check".

\

\



Simply put, a sanity check is simply thinking about your result,
and determining whether or not it makes sense. A great
strategy is to set one of the variables to a value so that the
physical problem becomes trivial—so trivial that the correct
answer is obvious to you. Then make sure your results likewise
provide this obvious answer!

For example, consider the problem we just finished analyzing.
Say that the impedance Z; is actually a short circuit (Z;=0). We
find that:

Z,

27,
1_‘O
Z, +22,

—— =1
22, + Z,

_O 7'(')

Z,=0 Z,=0
Likewise, consider the case where Z; is actually an open circuit
(Z,=»). We find that:

Z,

1 27,
°" z +22,

- =0
22, +Z,

=1 T, =

Zy=o Zy =

Think about what these results mean in terms of the physical
problem:

I{z) sy - IAz)
EE— A A —_—>
+ ZL ?L +
Zy, B Vi(z) V2 (22) Zy, B
) <
—>Z |



Q: Do these results make sense? Have we passed the sanity
check?

A: I/ let you decide!
What do you think?




