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2.4 – The Smith Chart 
 
Reading Assignment: pp. 64-73 
 
The Smith Chart  An icon of microwave 
engineering! 
 
The Smith Chart provides: 
 
1) A graphical method to solve many transmission line 
problems. 
 
2) A visual indication of microwave device performance. 
 
The most important fact about the Smith Chart is: 
 

 It exists on the complex Γ plane. 
 

HO:  THE COMPLEX Γ PLANE 
 
Q: But how is the complex Γ plane useful? 
 
A: We can easily plot and determine values of ( )zΓ  
 
HO: TRANSFORMATIONS ON THE COMPLEX Γ PLANE  
 
Q:  But transformations of Γ are relatively easy—
transformations of line impedance Z  is the difficult one. 
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A:  We can likewise map line impedance onto the complex Γ 
plane!  
 
HO:  MAPPING Z TO Γ 
 
HO: THE SMITH CHART 
 
HO: SMITH CHART GEOGRAPHY 
 
HO: THE OUTER SCALE 
 
The Smith Chart allows us to solve many important 
transmission line problems! 
 
HO:  ZIN CALCULATIONS USING THE SMITH CHART 
 
EXAMPLE:  THE INPUT IMPEDANCE OF A SHORTED 
TRANSMISSION LINE 
 
EXAMPLE: DETERMINING THE LOAD IMPEDANCE OF A 
TRANSMISSION LINE 
 
EXAMPLE:  DETERMINING THE LENGTH OF A TRANSMISSION 
LINE 
 
An alternative to impedance Z, is its inverse—admittance Y. 
 
HO:  IMPEDANCE AND ADMITTANCE 
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Expressing a load or line impedance in terms of its admittance 
is sometimes helpful.  Additionally, we can easily map 
admittance onto the Smith Chart. 
 
HO: ADMITTANCE AND THE SMITH CHART 
 
EXAMPLE: ADMITTANCE CALCULATIONS WITH THE SMITH CHART  
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The Complex Γ Plane 
 
Resistance R is a real value, thus we can indicate specific 
resistor values as points on the real line: 
 
 
 
 
Likewise, since impedance Z is a complex value, we can indicate 
specific impedance values as point on a two dimensional complex 
plane: 
 
 
 
 
 
 
 
 
 
 
 
Note each dimension is defined by a single real line: the 
horizontal line (axis) indicating the real component of Z (i.e., 
Re { }Z ), and the vertical line (axis) indicating the imaginary 
component of impedance Z (i.e., Im { }Z ).  The intersection of 
these two lines is the point denoting the impedance Z = 0. 
 
*  Note then that a vertical line is formed by the locus of all 
points (impedances) whose resistive (i.e., real) component is 
equal to, say, 75. 

Re { }Z  

Im { }Z  

R R =0 

R =5 Ω 

R =50 Ω R =20 Ω 

Z =30 +j 40 Ω 

Z =60 -j 30 Ω 
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*  Likewise, a horizontal line is formed by the locus of all points 
(impedances) whose reactive (i.e., imaginary) component is equal 
to -30. 
 
 
 
 
 
 
 
 
 
 
If we assume that the real component of every impedance is 
positive, then we find that only the right side of the plane will 
be useful for plotting impedance Z—points on the left side 
indicate impedances with negative resistances! 
 
 
 
 
 
 
 
 
 
 
 
 
 

Re { }Z  

Im { }Z  

R =75  

X =-30  

Re { }Z  

Im { }Z  
Invalid 
Region 
(R<0) 

Valid 
Region 
(R>0) 
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Moreover, we find that common impedances such as Z = ∞  (an 
open circuit!) cannot be plotted, as their points appear an 
infinite distance from the origin. 
 
 
 
 
 
 
 
 
 
 
 
Q: Yikes! The complex Z plane does not appear to be a very 
helpful.  Is there some graphical tool that is more useful?  
 
A: Yes!  Recall that impedance Z and reflection coefficient Γ 
are equivalent complex values—if you know one, you know the 
other. 
 
We can therefore define a complex Γ plane in the same manner 
that we defined a complex impedance plane.  We will find that 
there are many advantages to plotting on the complex Γ plane, 
as opposed to the complex Z  plane! 
 
 
 
 
 
 

Z =∞ (open) 
Somewhere way the 
heck over there !! 

Re { }Z  

Im { }Z
Z =0 

(short) 
Z =Z0 

(matched) 
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Note that the horizontal axis indicates the real component of 
Γ (Re { }Γ ), while the vertical axis indicates the imaginary 
component of Γ ( Im { }Γ ).   
 
We could plot points and lines on this plane exactly as before: 

Re { }Γ  

Im { }Γ  

Γ =0.3 +j 0.4 

Γ =0.6 -j 0.3 

Γ =-0.5 +j 0.1 

Re { }Γ  

Im { }Γ  

Re {Γ}=0.5  

Im {Γ} =-0.3  
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However, we will find that the utility of the complex Γ pane as a 
graphical tool becomes apparent only when we represent a 
complex reflection coefficient in terms of its magnitude ( Γ ) 
and phase (θΓ ): 

je θΓΓ = Γ  
 
In other words, we express Γ using polar coordinates: 
 
 
 
 
 
 
 
 
 
 
 
Note then that a circle is formed by the locus of all points 
whose magnitude Γ  equal to, say, 0.7.  Likewise, a radial line is 
formed by the locus of all points whose phase θΓ  is equal to 
135 . 

Re { }Γ  

Im { }Γ  
. 3 40 6 je πΓ =  Γ

  

θΓ   

Γ   

. 3000 7 jeΓ =  

Re { }Γ  

Im { }Γ  

.0 7Γ =   

135θΓ =   
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Perhaps the most important aspect of the complex Γ plane is its 
validity region.  Recall for the complex Z  plane that this 
validity region was the right-half plane, where Re { } 0Z >  (i.e., 
positive resistance). 
 
The problem was that this validity region was unbounded and 
infinite in extent, such that many important impedances  (e.g., 
open-circuits) could not be plotted. 
 
Q:  What is the validity region for the complex Γ plane? 
 
A:   Recall that we found that for Re { } 0Z >  (i.e., positive 
resistance), the magnitude of the reflection coefficient was 
limited: 

0 1< Γ <  
 
Therefore, the validity region for the complex Γ plane consists 
of all points inside the circle 1Γ = --a finite and bounded area! 
 
 
 
 
 
  
 
 
 
 
 

Re { }Γ  

Im { }Γ  

Invalid 
Region 
( 1Γ > ) 

Valid 
Region 
( 1Γ < ) 

1Γ =  
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Note that we can plot all valid impedances (i.e., R >0) within this 
finite region! 
 
 
 
 
 
 
 
 

Re { }Γ  

Im { }Γ  

.1 0je πΓ = = −  
(short) 

.0 1 0jeΓ = =  
(open) 

0Γ =   
(matched) 

(
1

purely reactive)Z jX
Γ =

= →
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Transformations on the 
Complex Γ Plane 

 
The usefulness of the complex Γ plane is apparent when we 
consider again the terminated, lossless transmission line: 
 
 
 
 
 
 
 
 
Recall that the reflection coefficient function for any location z 
along the transmission line can be expressed as (since 0Lz = ): 
 

( )
( )

2

2

j z
L

j z
L

z e
e

β

θ βΓ +

Γ = Γ

= Γ
 

 
And thus, as we would expect: 
 

- 2( 0)      and       ( ) j
inL Lz z e βΓ = = Γ Γ = − = Γ = Γ  

 
Recall this result “says” that adding a transmission line of length 

 to a load results in a phase shift in θΓ  by 2β−  radians, while 
the magnitude Γ  remains unchanged. 
 
 

0,Z β  

 

inΓ
 

0,Z β  
LΓ  

 

0z =  z = −  
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A: Precisely!  In fact, plotting the 
transformation of ΓL to Γin along a transmission 
line length  has an interesting graphical 
interpretation.  Let’s parametrically plot ( )zΓ  
from Lz z=  (i.e., 0z = ) to Lz z= −  (i.e., z = − ): 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Since adding a length of transmission line to a load LΓ  modifies 
the phase θΓ  but not the magnitude LΓ , we trace a circular arc 
as we parametrically plot ( )zΓ !  This arc has a radius LΓ  and an 
arc angle 2β  radians. 

Re { }Γ  

Im { }Γ  

Lθ  

2in Lθ θ β= −

LΓ

( )zΓ  

( )0
L

zΓ = = Γ

( )
in

zΓ = − = Γ

1Γ =  

Q: Magnitude Γ  and phase θΓ --aren’t those the 
values used when plotting on the complex Γ plane? 
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With this knowledge, we can easily solve many interesting 
transmission line problems graphically—using the complex Γ 
plane!  For example, say we wish to determine Γin for a 
transmission line length 8λ=  and terminated with a short 
circuit. 
 
 
 
 
 
 
 
The reflection coefficient of a short circuit is 1 1 j

L e πΓ = − = , 
and therefore we begin at that point on the complex Γ plane. 
We then move along a circular arc ( )2 2 4 2β π π− = − = −  
radians (i.e., rotate clockwise 90 ). 
 
 
 
 

0,Z β  inΓ
 

0,Z β  1LΓ = −  

0z =  z = −  

8λ=

Re { }Γ  

Im { }Γ  
( )zΓ

1 j
L e π+

Γ =

1Γ =

21 j
in e

π+
Γ =
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When we stop, we find we are at the point for inΓ ; in this case 
21 j

in e πΓ =  (i.e., magnitude is one, phase is o90 ). 
 
Now, let’s repeat this same problem, only with a new 
transmission line length of 4λ= .  Now we rotate clockwise 
2  radians (180 ).β π=  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For this case, the input reflection coefficient is 01 1j

in eΓ = =   : 
the reflection coefficient of an open circuit!  
 
Our short-circuit load has been transformed into an open 
circuit with a quarter-wavelength transmission line! 
 

But, you knew this would happen—right? 

Re { }Γ  

Im { }Γ  
( )zΓ

1 j
L e π+

Γ =

1Γ =

01 j
in e +

Γ =
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Recall that a quarter-wave transmission line was one of the 
special cases we considered earlier.  Recall we found that the 
input impedance was proportional to the inverse of the load 
impedance.   
 
Thus, a quarter-wave transmission line transforms a short into 
an open.  Conversely, a quarter-wave transmission can also 
transform an open into a short: 
 
 
 
 
 
 

0,Z β  

4λ=  

1inΓ =  
 

0,Z β  1LΓ = −  

0z =  z = −  

(open) (short) 

Re { }Γ  

Im { }Γ  

( )zΓ

1 j
in e π+

Γ =

1Γ =

01 j
L e +

Γ =
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Finally, let’s again consider the problem where 1LΓ = −  (i.e., 
short), only this time with a transmission line length 2λ=  ( a 
half wavelength!). We rotate clockwise 2 2  radians (360 ).β π=   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thus, we find that in LΓ = Γ  if 2λ= --but you knew this too!   
 
Recall that the half-wavelength transmission line is likewise a 
special case, where we found that in LZ Z= .  This result, of 
course, likewise means that in LΓ = Γ . 
 

Re { }Γ  

Im { }Γ  
( )zΓ

1 j
L e π+

Γ =

1Γ =

1 j
in e π+

Γ =

Hey look! We came clear 
around to where we started! 
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Now, let’s consider the opposite problem.  Say we know that the 
input impedance at the beginning of a transmission line with 
length 8λ=  is: 

600.5 j
in eΓ =  

 
Q: What is the reflection coefficient of the load?   
 
A:  In this case, we begin at Γin and rotate COUNTER-
CLOCKWISE along a circular arc (radius 0.5) 2 2β π=  radians 
(i.e., 60 ).  Essentially, we are removing the phase shift 
associated with the transmission line! 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The reflection coefficient of the load is therefore: 
 

1500.5 j
L eΓ =  

1Γ =  

0.5 

Re { }Γ  

Im { }Γ  

2L inθ θ β= +  

inθ( )zΓ

1500 5
L

j. eΓ =

600 5
in

j. eΓ =  
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Mapping Z to Γ  
 
Recall that line impedance and reflection coefficient are 
equivalent—either one can be expressed in terms of the other: 
 

( ) ( )
( ) ( ) ( )

( )
0

0
0

1
         and           

1
Z z Z zz Z z Z
Z z Z z

⎛ ⎞− + Γ
Γ = = ⎜ ⎟

+ − Γ⎝ ⎠
 

 
Note this relationship also depends on the characteristic 
impedance Z0 of the transmission line.  To make this relationship 
more direct, we first define a normalized impedance value z ′  
(an impedance coefficient!): 
 
 

( ) ( ) ( ) ( ) ( ) ( )
0 0 0

Z z R z X zz z j r z j x z
Z Z Z

′ = = + = +  

 
 
Using this definition, we find: 
 
 

( ) ( )
( )
( )
( )
( )
( )

0

0

0

0

1
1

1
 

1

Z z Zz
Z z Z
Z z Z
Z z Z
z z
z z

−
Γ =

+

−
=

+

′ −
=

′ +
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Thus, we can express ( )zΓ  explicitly in terms of normalized 
impedance z ′--and vice versa! 
 
 

( ) ( )
( ) ( ) ( )

( )
1 1
1 1

z z zz z z
z z z

′ − + Γ
′Γ = =

′ + − Γ
 

 
 
The equations above describe a mapping between coefficients 
z ′  and Γ . This means that each and every normalized impedance 
value likewise corresponds to one specific point on the complex 
Γ  plane! 
 
For example, say we wish to mark or somehow indicate the 
values of normalized impedance z’  that correspond to the 
various points on the complex Γ plane. 
 
Some values we already know specifically: 
 
 
 
 
 
 
 
 
 
 
 
 

case Z z ′  Γ 

1 ∞  ∞  1 

2 0 0 -1 

3 0Z  1 0 

4 0j Z  j  j  

5 0j Z−  j−  j−  
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Therefore, we find that these five normalized impedances map 
onto five specific points on the complex Γ  plane: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Or, the five complex Γ  map onto five points on the normalized 
impedance plane:

rΓ  

iΓ  

( )

0

1

z ′ =

Γ=−
 

1Γ =

( )

1

0

z ′ =

Γ=
 

( )1

z ′ = ∞

Γ=
 

( )
z j

j

′ = −

Γ=−
 

( )
z j

j

′ =

Γ=
 

Invalid 
Region 

r  

x  

( )

0

1

z ′ =

Γ=−
 

( )

1

0

z ′ =

Γ=
 ( )

z j

j

′ = −

Γ=−
 

( )
z j

j

′ =

Γ=
 ( )1

z ′ = ∞

Γ=
 

Invalid 
Region 
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Now, the preceding provided examples of the mapping of points 
between the complex (normalized) impedance plane, and the 
complex Γ  plane. 
 
We can likewise map whole contours (i.e., sets of points) 
between these two complex planes. We shall first look at two 
familiar cases. 
 
 
  Z R=  
 
 
In other words, the case where impedance is purely real, with 
no reactive component (i.e., 0X = ). 
 
Meaning that normalized impedance is: 
 

( )0 0z r j i .e., x′ = + =  
 

 
where we recall that 0r R Z= . 
 
Remember, this real-valued impedance results in a real-valued 
reflection coefficient: 

1
1

r
r

−
Γ =

+
 

I.E.,: 
 

{ } { }1 0
1r i

rRe Im
r

−
Γ Γ = Γ Γ =

+
 



  
 

 

2/4/2010 Mapping Z to Gamma.doc 5/8 

Jim Stiles The Univ. of Kansas  Dept. of EECS 

r  

x  

( )
0

0

x

i

=

Γ =
 

r =∞

Invalid 
Region 

Thus, we can determine a mapping between two contours—one 
contour ( 0x = ) on the normalized impedance plane, the other 
( 0iΓ = ) on the complex Γ plane: 
 

0 0ix = ⇔ Γ =  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

rΓ  

iΓ  

1Γ =

( )
0

0

x

i

=

Γ =
 

Invalid 
Region 
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  Z jX=  
 
 
In other words, the case where impedance is purely imaginary, 
with no resistive component (i.e., 0R = ). 
 
Meaning that normalized impedance is: 
 
 

( )0 0z jx i .e., r′ = + =  
 

 
where we recall that 0x X Z= . 
 
Remember, this imaginary impedance results in a reflection 
coefficient with unity magnitude: 
 
 

1Γ =  
 

 
Thus, we can determine a mapping between two contours—one 
contour ( 0r = ) on the normalized impedance plane, the other 
( 1Γ = ) on the complex Γ  plane: 
 

0 1r = ⇔ Γ =  
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r  

( )
0

1

r =

Γ =
 

x j= ∞  

x j=− ∞  

Invalid 
Region 

x  

rΓ  

iΓ  

1Γ =

( )
0

1

r =

Γ =
 

Invalid 
Region 
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A:  Actually, not only are mappings of more general impedance 
contours (such as 0 5r .=  and 1 5x .= − ) onto the complex Γ  
plane possible, these mappings have already been achieved—
thanks to Dr. Smith and his famous chart! 
 

Q:  These two “mappings” may 
very well be fascinating in an 
academic sense, but they are not 
particularly relevant, since actual 
values of impedance generally 
have both a real and imaginary 
component.   
 
Sure, mappings of more general 
impedance contours (e.g., 0 5r .=  
or 1 5x .= − ) onto the complex Γ  
would be useful—but it seems 
clear that those mappings are 
impossible to achieve!?!  
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The Smith Chart 
 
Say we wish to map a line on the normalized complex impedance 
plane onto the complex Γ plane. 
 
For example, we could map the vertical line r =2 (Re{ } 2z ′ = ) or 
the horizontal line x =-1 (Im{ } 1z ′ = − ). 
 
 
 
 
 
 
 
 
 
 
Recall we know how to map the vertical line r =0; it simply maps 
to the circle 1Γ =  on the complex Γ plane. 
 
Likewise, we know how to map the horizontal line x = 0; it simply 
maps to the line 0iΓ =  on the complex Γ plane. 
 
But for the examples given above, the mapping is not so straight 
forward.  The contours will in general be functions of both 

 and r iΓ Γ  (e.g., 2 2 0 5r i .Γ + Γ = ), and thus the mapping cannot be 
stated with simple functions such as 1Γ =  or 0iΓ = . 

Re { }z ′  

Im { }z ′  

r =2  

x =-1  
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As a matter of fact, a vertical line on the normalized impedance 
plane of the form: 

rr c=  , 
 

where rc  is some constant (e.g. 2r =  or 0 5r .= ), is mapped onto 
the complex Γ plane as: 
 

2 2
2 1

1 1
r

r i
r r

c
c c

⎛ ⎞ ⎛ ⎞
Γ − + Γ =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 

 
Note this equation is of the same form as that of a circle: 
 

( ) ( )22 2
c cx x y y a− + − =  

 
where: 
 

a = the radius of the circle 
 

( )c c cP x x , y y= = ⇒   point located at the center of the circle 
 
 
Thus, the vertical line r = cr maps into a circle on the complex Γ 
plane! 
 
By inspection, it is apparent that the center of this circle is 
located at this point on the complex Γ  plane: 
 

0
1

r
c r i

r

cP ,
c

⎛ ⎞
Γ = Γ =⎜ ⎟+⎝ ⎠
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In other words, the center of this circle always lies somewhere 
along the 0iΓ =  line. 
 
Likewise, by inspection, we find the radius of this circle is: 
 

1
1 r

a
c

=
+

 

 
We perform a few of these mappings and see where these 
circles lie on the complex Γ plane: 
 
 
 
 
 
 

rΓ  

iΓ  1Γ =
0 3r .= −  

0 0r .=  

0 3r .=  

1 0r .=  

3 0r .=  

5 0r .= −  
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We see that as the constant cr increases, the radius of the 
circle decreases, and its center moves to the right. 
 
Note: 
 

1.   If cr > 0 then the circle lies entirely within the circle  
1Γ = . 

 
2.   If cr < 0 then the circle lies entirely outside the circle  

1Γ = . 
 
3.   If cr = 0  (i.e., a reactive impedance), the circle lies on 
circle  1Γ = . 
 
4.  If rc = ∞ , then the radius of the circle is zero, and its 
center is at the point 1, 0r iΓ = Γ =  (i.e., 01 jeΓ = ).  In 
other words, the entire vertical line r = ∞  on the 
normalized impedance plane is mapped onto just a single 
point on the complex Γ plane! 
 
But of course, this makes sense! If r = ∞ , the impedance is 
infinite (an open circuit), regardless of what the value of 
the reactive component x is. 
 

 
Now, let’s turn our attention to the mapping of horizontal lines 
in the normalized impedance plane, i.e., lines of the form: 
 

ix c=  
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where ic  is some constant (e.g. 2x = −  or 0 5x .= ). 
 
We can show that this horizontal line in the normalized 
impedance plane is mapped onto the complex Γ plane as: 
 
 

( )
2

2
2

1 11r i
i ic c

⎛ ⎞
Γ − + Γ − =⎜ ⎟

⎝ ⎠
 

 
 
Note this equation is also that of a circle! Thus, the horizontal 
line x = ci maps into a circle on the complex Γ plane! 
 
By inspection, we find that the center of this circle lies at the 
point: 
 

11c r i
i

P ,
c

⎛ ⎞
Γ = Γ =⎜ ⎟

⎝ ⎠
 

 
in other words, the center of this circle always lies somewhere 
along the vertical 1rΓ =  line. 
 
Likewise, by inspection, the radius of this circle is: 
 
 

1
i

a
c

=  
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We perform a few of these mappings and see where these 
circles lie on the complex Γ plane: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We see that as the magnitude of constant  ci increases, the 
radius of the circle decreases, and its center moves toward the 
point ( )1, 0r iΓ = Γ = . 
 
Note: 
 

1.   If ci > 0 (i.e., reactance is inductive) then the circle lies 
entirely in the upper half of the complex Γ plane (i.e., 
where 0iΓ > )—the upper half-plane is known as the 
inductive region. 
 

rΓ  

iΓ  

1Γ =

0 5x .=  

3 0x .=  

0 5x .= −  

2 0x .=  
1 0x .=  

3 0x .= −  

2 0x .= −  1 0x .= −  

1rΓ =  
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2.   If ci < 0 (i.e., reactance is capacitive) then the circle 
lies entirely in the lower half of the complex Γ plane (i.e., 
where 0iΓ < )—the lower half-plane is known as the 
capacitive region. 
 
3.   If ci = 0  (i.e., a purely resistive impedance), the circle 
has an infinite radius, such that it lies entirely on the line  

0iΓ = . 
 
4.  If ic = ±∞ , then the radius of the circle is zero, and its 
center is at the point 1, 0r iΓ = Γ =  (i.e., 01 jeΓ = ).  In other 
words, the entire vertical line  or x x= ∞ = −∞  on the 
normalized impedance plane is mapped onto just a single 
point on the complex Γ plane! 
 
But of course, this makes sense! If x = ∞ , the impedance 
is infinite (an open circuit), regardless of what the value of 
the resistive component r is. 

 
5.   Note also that much of the circle formed by mapping 

ix c=  onto the complex Γ plane lies outside the circle 
1Γ = . 

 
This makes sense!  The portions of the circles laying 
outside 1Γ =  circle correspond to impedances where the 
real (resistive) part is negative (i.e., r < 0). 
 

Thus, we typically can completely ignore the portions of the 
circles that lie outside the 1Γ =  circle ! 
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Mapping many lines of the form rr c=  and ix c= onto circles on 
the complex Γ plane results in tool called the Smith Chart. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Re{ }Γ  

Im{ }Γ  
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Note the Smith Chart is simply the vertical lines rr c=  and 
horizontal lines ix c=  of the normalized impedance plane, 
mapped onto the two types of circles on the complex Γ  plane.   
 
Note for the normalized impedance plane, a vertical line rr c=  
and a horizontal line ix c=  are always perpendicular to each 
other when they intersect.  We say these lines form a 
rectilinear grid. 
 
However, a similar thing is true for the Smith Chart!  When a 
mapped circle rr c=  intersects a mapped circle ix c=  , the two 
circles are perpendicular at that intersection point.  We say 
these circles form a curvilinear grid. 
In fact, the Smith Chart is formed by distorting the rectilinear 
grid of the normalized impedance plane into the curvilinear grid 
of the Smith Chart! 
 
I.E.,: 
 
 
 
 
 
 
 
 
 
 
 
 

r  

x  1x =  

0x =  

1x = −  

0r =  

1r =  
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Distorting this rectilinear grid: 
 
 
 
 
 
 
 
 
 
 
 
 
 
And then distorting some more—we have the curvilinear grid of 
the Smith Chart! 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

r  

x  

r  
x  
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Smith Chart Geography 
 
We have located specific points on the complex impedance 
plane, such as a short circuit or a matched load.   
 
We’ve also identified contours, such as 1r =  or 2x =− . 

 
We can likewise identify whole regions 
(!) of the complex impedance plane, 
providing a bit of a geography lesson of 
the complex impedance plane. 

 
 
For example, we can divide the complex impedance plane into 
four regions based on normalized resistance value r: 
 
 
 
 
 
 
 
 

Re { }z ′  

Im { }z ′  
r =+1  r =-1  

 

1r ≤−  1 0r− ≤ ≤  0 1r≤ ≤  

 

1 r≤  

r =0  
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Just like points and contours, these regions of the complex 
impedance plane can be mapped onto the complex gamma plane! 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Instead of dividing the complex impedance plane into regions 
based on normalized resistance r, we could divide it based on 
normalized reactance x:

rΓ  

iΓ  
1 0r .=−  

1 0r .=  

r =0  

1r ≤−  

1r ≥  

 

1 0r− ≤ ≤  

0 1r≤ ≤  
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These four regions can likewise be mapped onto the complex 
gamma plane:

Re { }z ′  

Im { }z ′  

x =0  

x =1  

x =-1  

1 0x− ≤ ≤  

0 1x≤ ≤  

1x ≤−  

1x ≥  
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Note the four resistance regions and the four reactance regions 
combine to from 16 separate regions on the complex impedance 
and complex gamma planes! 
 
Eight of these sixteen regions lie in the valid region (i.e., 

0r > ), while the other eight lie entirely in the invalid region.   
 
Make sure you can locate the eight impedance regions on a 
Smith Chart—this understanding of Smith Chart geography 
will help you understand your design and analysis results! 
 

rΓ  

iΓ  

0 5x .=  

3 0x .=  

2 0x .=  
1 0x .=  

x =-1  

x =1  

x =0  

1x ≥   

0 1x≤ ≤  

 

1 0x− ≤ ≤  

1x ≤−  
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The Outer Scale 
 
Note that around the outside of the Smith Chart there is a 
scale indicating the phase angle θΓ  (i.e., je θΓΓ = Γ ), from 

180 180θΓ− < < . 
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Recall however, for a terminated transmission line, the 
reflection coefficient function is: 
 

( ) 022
0 0

j zj zz e e β θβ +Γ = Γ = Γ  
 

Thus, the phase of the reflection coefficient function depends 
on transmission line position z as: 
 

( ) 0 0 0
22 2 4z z z zπ

θ β θ
λ λ

θ π θΓ

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜= + = + = +⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
 

 
As a result, a change in line position z (i.e., z∆ ) results in a 
change in reflection coefficient phase θΓ  (i.e., θΓ∆ ): 
 

4 z
θ π

λΓ

⎛ ⎞⎟⎜∆ = ⎟⎜ ⎟⎜ ⎠
∆

⎝
 

 
For example, a change of position equal to one-quarter 
wavelength 4z λ∆ =  results in a phase change of π  radians—we 
rotate half-way around the complex Γ  plane (otherwise known 
as the Smith Chart). 
 
Or, a change of position equal to one-half wavelength 2z λ∆ =  
results in a phase change of 2π  radians—we rotate completely 
around the complex Γ  plane (otherwise known as the Smith 
Chart). 
 
The Smith Chart then has a second scale (besides θΓ ) that 
surrounds it—one that relates transmission line position in 
wavelengths (i.e., z λ∆ ) to the reflection coefficient phase: 
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1 14
4 4 4

z zθ
θ

λ
π

πλ
Γ

Γ

⎛ ⎞
= + ⇔ = −⎜ ⎟

⎝ ⎠
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Since the phase scale on the Smith Chart extends from 

180 180θΓ− < <  (i.e., π θ πΓ− < < ), this electrical length scale 
extends from: 
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0 0.5z
λ< <  

 
Note for this mapping the reflection coefficient phase at 
location 0z =  is  Lθ π= − . Therefore, 0θ π= − , and we find that: 
 

0
0 0 0 0

j je eθ π−Γ = Γ = Γ = − Γ  
 

In other words, 0Γ  is a negative real value. 
 
Q:  But, 0Γ  could be anything! What is the likelihood of 0Γ  
being a real and negative value?  Most of the time this is not 
the case—this second Smith Chart scale seems to be nearly 
useless!? 
 
A:  Quite the contrary! This electrical length scale is in fact 
very useful—you just need to understand how to utilize it! 
 

This electrical length scale is very much like 
the mile markers you see along an interstate 
highway; although the specific numbers are 
quite arbitrary, they are still very useful. 

 
 
 
 
Take for example Interstate 70, 
which stretches across Kansas.  The 
western end of I-70 (at the Colorado 
border) is denoted as mile 1.   
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At each mile along I-70 a new marker is placed, 
such that the eastern end of I-70 (at the 
Missouri border) is labeled mile 423—
Interstate 70 runs for 423 miles across Kansas! 
 
The location of various towns and burgs along I-70 can thus be 
specified in terms of these mile markers.  For example, along I-
70 we find: 

Oakley at mile marker 76 
Hays at mile marker 159 

Russell at mile marker 184 
Salina at mile marker 251 

Junction City at mile marker 296 
Topeka at mile marker 361 

Lawrence at mile marker 388 
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So say you are traveling eastbound ( ) along I-
70, and you want to know the distance to Topeka.  
Topeka is at mile marker 361, but this does not 
of course mean you are 361 miles from Topeka. 
 
Instead, you subtract from 361 the value of the mile marker 
denoting your position along I-70. 
 

For example, if you find yourself in the lovely borough 
of Russell (mile marker 184), you  have precisely 361-
184 = 177 miles to go before reaching Topeka! 

 
Q:  I’m confused! Say I’m in Lawrence (mile marker 388); using 
your logic I am a distance of 361-388 = -27 miles from Topeka!  
How can I be a negative distance from something?? 
 
A:  The mile markers across Kansas are arranged such that 
their value increases as we move from west to east across the 
state.   Take the value of the mile marker denoting to where you 
are traveling, and subtract from it the value of the mile marker 
where you are. 
 
If this value is positive, then your destination is East of you; if 
this value is negative, it is West of your current position 
(hopefully you’re in the westbound lane!). 
 
For example, say you’re traveling to Salina (mile marker 251).  If 
you are in Oakley (mile marker 76) then: 
 

251 – 76 =  175           Salina is 175 miles East of Oakley 
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If, on the other hand, you begin your journey from Junction City 
(mile marker 296), we find: 
 
251 – 296 =  -45       Salina is 45 miles West of Junction City 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Q:  But just what the &()#$@% does this discussion have to do 
with SMITH CHARTS !!?!? 
 
A:  The electrical length scale (z λ ) around the perimeter of 
the Smith Chart is precisely analogous to mile markers along an 
interstate! 
 
 

7 
6 2 

5 
1 

2 
9 
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175 
miles 

45 
miles 
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Recall that the change in phase ( θΓ∆ ) of the reflection 
coefficient function is related to the change in distance ( z∆ ) 
along a transmission line as: 
 

4 z
θ π

λΓ

⎛ ⎞⎟⎜∆ = ⎟⎜ ⎟⎜ ⎠
∆

⎝
 

 
The value z λ∆  can be determined from the outer scale of the 
Smith Chart, simply by taking the difference of the two “mile 
markers” values. 
 

 

8
λ

 

4
λ

 

2
λ

 

0  

3
8
λ

 



 

2/9/2010 The Outer Scale.doc 9/21 

Jim Stiles The Univ. of Kansas Dept. of EECS  

For example, say you’re at some 
location 1zz =  along a transmission 
line.  The value of the reflection 
coefficient function at that point 
happens to be: 
 

( ) 65
1z 0 685 jz . e −Γ = =  

 
Finding the phase angle of  

65θΓ = −  on the outer scale of the 
Smith Chart, we note that the 
corresponding electrical length 
value is: 

0.160λ  
 

Note this tells us nothing about the location 1zz = .  This does 
not mean that 1z 0.160λ= , for example! 
 
Now, say we move a short distance z∆  (i.e., a distance less 
than 2λ ) along the transmission line, to a new location denoted 
as 2zz = .  
  
We find that this new location that the reflection coefficient 
function has a value of: 
 

( ) 74
2z 0 685 jz . e +Γ = =  
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Now finding the phase angle of  
74θΓ = +  on the outer scale of the 

Smith Chart, we note that the 
corresponding electrical length 
value is: 

0.353λ  
 

Note this tells us nothing about 
the location 2zz = .  This does not 
mean that 1z 0.353λ= , for 
example! 
 
Q:  So what do the values 0.160λ  and 0.353λ  tell us? 
 
A:  They allow us to determine the distance between points z2 
and z1  on the transmission line: 
 

2 1z zz
λ λ λ
∆

= −   !!! 

 
Thus, for this example, the distance between locations z2 and z1 
is: 

. . .0 353 0 160 0 193z λ λ λ∆ = − =  
 

  The transmission line location z2 is a distance of 0.193λ  
from location z1! 
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Q: But, say the reflection 
coefficient at some point z3 
has a phase value of 112θΓ = − .  
This maps to a value of: 
 

0.094λ  
 

on the outer scale of the 
Smith Chart.   
 
 

The distance between z3 and z1 would then turn out to be: 
 

. . .0 094 0 160 0 066z
λ
∆

= − = −  

 
What does the negative value mean?? 
 
A:  Just like our I-70 mile marker analogy, the sign (plus or 
minus) indicates the direction of movement from one point to 
another. 
 
 In the first example, we find that 0z∆ > , meaning 2 1z z>  : 
 

.2 1z z 0 094λ= +  
 

Clearly, the location z2 is further down the transmission line 
(i.e., closer to the load) than is location z1. 

 
For the second example, we find that 0z∆ < , meaning 3 1z z<  : 
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.3 1z z 0 066λ= −  
 
Conversely, in this second example, the location z3 is closer to 
the beginning of the transmission line (i.e., farther from the 
load) than is location z1. 
 
This is completely consistent with what we already know to be 
true! 
 
In the first case, the positive value .0 193z λ∆ =  maps to a 
phase change of ( )74 65 139θΓ∆ = − − = . 
 
In other words, as we move toward the load from location z1 to 
location z2, we rotate counter-clockwise around the Smith 
Chart. 
 
Likewise, the negative value .0 066z λ∆ = −  maps to a phase 
change of  ( )112 65 47θΓ∆ = − − − = − . 
 
In other words, as we move away from the load (toward the 
source) from a location z1 to location z3, we rotate clockwise 
around the Smith Chart. 
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( ) 112
3z 0 685 jz . e −Γ = =  

0 193z . λ∆ = +  

( ) 74
2z 0 685 jz . e +Γ = =  

0 066z . λ∆ = −  

( ) 65
1z 0 685 jz . e −Γ = =  
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Q:  I notice that there is a second electrical 
length scale on the Smith Chart.  Its values 
increase as we move clockwise from an initial 
value of zero to a maximum value of .0 5λ . 
 
What’s up with that? 
 
A:  This scale uses an alternative mapping 
between θΓ  and z λ :  
 

1 14
4 4 4

z z
λ λ

θ
θ π

π
Γ

Γ

⎛ ⎞
= − ⇔ = −⎜ ⎟

⎝ ⎠
 

 
This scale is analogous to a situation wherein a second set of 
mile markers were placed along I-70.  These mile markers begin 
at the east side of Kansas (at the Missouri border), and end at 
the west side of Kansas (at the Colorado border). 
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Q:  What good would this second set do? Would it serve any 
purpose? 
 
A:  Not much really.  After all, this second set is redundant—it 
does not provide any new information that the original set 
already provides. 
 

Yet, if we were to place this new set along I-70, 
we almost certainly would place the original mile 
markers along the eastbound lanes, and this new 
set along the westbound lanes. 
 
In this manner, all I-70 motorists (eastbound or 
westbound) would see an increase in the mile 
markers as they traverse the Sunflower State. 

 
As a result, a positive distance to their 
destination indicates to  all drivers that 
their destination is in front of them (in the 
direction they are driving), while a negative 
distance indicates to all drivers that their 
destination is behind the (they better turn 
around!). 
 
Thus, it could be argued that each set of mile markers is 
optimized for a specific direction of travel—the original set if 
you are traveling east, and this second set if you are traveling 
west. 
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Similarly, the two electrical length scales on the Smith Chart 
are meant for two different “directions of travel”.  If we move 
down the transmission line toward the load, the value z∆  will 
be positive. 
 
Conversely, if we move up the transmission line and away from 
the load (i.e., “toward the generator”), this second electrical 
length scale will also provide a positive value of z∆ . 
 
Again, these two electrical length scales are 
redundant—you will  get the correct answer 
regardless of the scale you use, but be careful 
to interpret negative signs properly. 
 

Q:  Wait!  I just used a Smith Chart to 
analyze a transmission line problem in the 
manner you have just explained.  At one 
point on my transmission line the phase of 
the reflection coefficient is 170θΓ = + , 
which is denoted as .0 486λ  on the 
“wavelengths toward load” scale. 
 
I then moved a short distance along the line 
toward the load,  and found that the 
reflection coefficient phase was 144θΓ = − , 
which is denoted as .0 050λ  on the 
“wavelengths toward load” scale. 

 
According to your “instruction”, the distance between these two 
points is: 

. . .0 050 0 486 0 436z λ λ λ∆ = − = −  
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A  large negative value!  This says that I moved nearly a half 
wavelength away from the load, but I know that I moved just a 
short distance toward the load!  What happened? 
 
 A:  Note the electrical length scales on the Smith Chart begin 
and end where θ πΓ = ±  (by the short circuit!).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In your example, when rotating counter-clockwise around the 
chart (i.e., moving toward the load) you passed by this 
transition.  This makes the calculation of z∆  a bit more 
problematic. 

 

 

( )1zzΓ =  

( )2zzΓ =  
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To see why, let’s again consider our I-70 
analogy.  Say we are Lawrence, and wish to 
drive eastbound on Interstate 70 until we 
reach Columbia, Missouri. 

 
The mile marker for Lawrence is of course 388, and Columbia 
Missouri is located at mile marker 126.  We might conclude 
that the distance from Lawrence to Columbia is: 
 

126 388 262 miles− = −  
 

Q:  Yikes! According to this, Columbia  is 262 miles west of 
Lawrence—should we turn the car around? 
 
A:  Columbia, Missouri is most decidedly east of Lawrence, 
Kansas.  The calculation above is incorrect.The problem is that 
mile markers “reset” once we reach a state border.  Once we 
hit the Missouri-Kansas border, the mile markers reset to zero, 
and then again increase as we travel eastward. 
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Thus, to accurately determine the distance between Lawrence 
and Columbia, we need to break the problem into two steps: 
 
Step 1:  Determine the distance between Lawrence (mile 
marker 388) , and the last mile marker before the state line 
(mile marker 423): 

423 388 35 miles− =  
 

Step 2:  Determine the distance between the first mile marker 
after the state line (mile marker 0) and Columbia (mile marker 
126): 

126 0 126 miles− =  
 

Thus, the distance between Lawrence and Columbia is the 
distance between Lawrence and the state line (35 miles), plus 
the distance from the state line to Columbia (126 miles): 
 

35 126 161 miles+ =  
 

Columbia, Missouri is 161 miles east of Lawrence, Kansas! 
 
Now back to the Smith Chart problem; as we rotate counter-
clockwise around the Smith Chart, the “wavelengths toward 
load” scale increases in value, until it reaches a maximum value 
of .0 5λ  (at θ πΓ = ± ) . 
 
At that point, the scale “resets” to its minimum value of zero.  
We have metaphorically “crossed the state line” of this scale. 
 
Thus, to accurately determine the electrical length moved along 
a transmission line, we must divide the problem into two steps: 
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Step 1:  Determine the electrical length from the initial point 
to the “end” of the scale at .0 5λ . 
 
Step 2:  Determine the electrical distance from the “beginning” 
of the scale (i.e., 0) and the second location on the transmission 
line.  
 
Add the results of steps 1 and 2, and you have your answer! 
 
For example, let’s look at the case that originally gave us the 
erroneous result.  The distance from the initial location to the 
end of the scale is: 
 

. . .0 500 0 486 0 014λ λ λ− = +  
 

And the distance from the beginning of the scale to the second 
point is: 

. . .0 050 0 000 0 050λ λ λ− = +  
 

Thus the distance between the two points is: 
 

. . .0 014 0 050 0 064λ λ λ+ = +  
 

The second point is just a little closer to the load than the 
first! 
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( )1zzΓ =  

( )2zzΓ =  

.0 014λ  

.0 050λ  
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Zin Calculations using  
the Smith Chart 

 
 
 
 
 
 
 
 
 
The normalized input impedance inz ′  of a transmission line length 

, when terminated in normalized load Lz ′ , can be determined as: 
 

0

0
0

0 0

0

0

tan

tan
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1
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in
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⎛ ⎞+
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+
=

+

=
′ +

′+

 

 
 
 
 
 

 

Lz ′  
 

z = −  0z =  

inz ′  0 1z ′ =  

Q: Evaluating this unattractive expression 
looks not the least bit pleasant.  Isn’t there a 
less disagreeable method to determine inz ′ ? 
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A:  Yes there is! Instead, we could determine this normalized 
input impedance by following these three steps: 
 

1.   Convert Lz ′  to LΓ , using the equation: 
 

0

0

0

0

1
1

1
1

L
L

L

L

L

L

L

Z Z
Z Z
Z

z
z

Z
Z Z

−
Γ =

+

−

′ −
′

+

=
+

=  

 
2.  Convert LΓ  to inΓ , using the equation: 
 

2j
in L e β−Γ = Γ  

 
3.  Convert inΓ  to inz ′ , using the equation: 
 

0

1
1

in in
in

in

Zz
Z

+ Γ′ = =
− Γ

 

 
 
 
 
 
 
 
 
 
 

Q: But performing these three 
calculations would be even more 
difficult than the single step 
you described earlier.  What 
short of dimwit would ever use 
(or recommend) this approach? 
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A: The benefit in this last approach is that each of the three 
steps can be executed using a Smith Chart—no complex 
calculations are required! 
  
1.   Convert Lz ′ to LΓ  
 

Find the point Lz ′  from the impedance mappings on your 
Smith Chart. Place you pencil at that point—you have now 
located the correct LΓ  on your complex Γ plane! 
 
For example, say 0.6 1.4Lz j′ = − .  We find on the Smith 
Chart the circle for r =0.6 and the circle for x =-1.4.  The 
intersection of these two circles is the point on the 
complex Γ plane corresponding to normalized impedance 

0.6 1.4Lz j′ = − . 
 
This point is a distance of 0.685 units from the origin, and 
is located at angle of –65 degrees.  Thus the value of LΓ is: 
 

650.685 j
L e −Γ =  

 
2.  Convert LΓ  to inΓ  
 

Since we have correctly located the point LΓ  on the 
complex Γ plane, we merely need to rotate that point 
clockwise around a circle ( 0.685Γ = ) by an angle 2β . 

 
When we stop, we are located at the point on the complex 
Γ plane where inΓ = Γ ! 
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For example, if the length of the transmission line 
terminated in  0.6 1.4Lz j′ = −  is 0.307λ= , we should 
rotate around the Smith Chart a total of 2 1.228β π=  
radians, or 221 .   We are now at the point on the complex 
Γ plane: 

740.685 je +Γ =  
 

This is the value of inΓ ! 
 

3.  Convert inΓ  to inz ′  
 

When you get finished rotating, and your pencil is located 
at the point inΓ = Γ , simply lift your pencil and determine 
the values r and x to which the point corresponds! 
 
For example, we can determine directly from the Smith 
Chart that the point 740.685 j

in e +Γ =  is located at the 
intersection of circles r = 0.5 and x =1.2.  In other words: 
 

0.5 1.2inz j′ = +  
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65θΓ = −  

0 685.Γ =  

650 685 j
L . e −Γ =  

Step 1 
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Step 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 2 0 160 0 147 0 307. . .λ λ λ= + = + =  
 
2 221β =  

 

1 0 16. λ=  

0 685.Γ =  

740 685 j
in . e +Γ =  

650 685 j
L . e −Γ =  

2 0 147. λ=  



 

2/9/2010 Zin Calculations using the Smith Chart.doc 7/7 

Jim Stiles The Univ. of Kansas Dept. of EECS   

0 5 1 2inz . j .′ = +  

Step 3 
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Example: The Input 
Impedance of a Shorted 

Transmission Line 
 
 
Let’s determine the input impedance of a transmission line that 
is terminated in a short circuit, and whose length is: 
 

a)  0.125 2 908
λ λ β= = ⇒ =  

 
b)  3 0.375 2 2708

λ λ β= = ⇒ =  

  
 
 
 
 
 
 
 
 

 

0Lz ′ =  
 

z = −  0z =  

inz ′  0 1z ′ =  
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a) 0.125 2 908
λ λ β= = ⇒ =  

 
Rotate clockwise 90  from 1801 0 j. eΓ = − =  and find inz j′ = .

1801 j
L eΓ = − =  

inz j=  

( )zΓ
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b)  3 0.375 2 2708
λ λ β= = ⇒ =  

 
Rotate clockwise 270  from 1801 0 j. eΓ = − =  and find inz j′ = − . 

1801 j
L eΓ = − =  

inz j′ = −  

( )zΓ
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Example: Determining the 
Load Impedance of a 

Transmission Line 
 
Say that we know that the input impedance of a transmission 
line length 0.134λ=  is: 
 

1.0 1.4inz j′ = +  
 

Let’s determine the impedance of the load that is terminating 
this line. 
 
 
 
 
 
 
 
 
 
Locate inz ′  on the Smith Chart, and then rotate counter-
clockwise (yes, I said counter-clockwise)  2 96 5.β = .  
Essentially, you are removing the phase shift associated with 
the transmission line.  When you stop, lift your pencil and find 

Lz ′  ! 

0 134λ= .  

Lz ??′ =
 

z = − 0z =

1 1 4
inz

j .
′ =

+
 0 1z ′ =  
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1 1 4inz j .′ = +  

0 134
2 96 5

.
.

λ

β

=

=
 

0 29 0 24Lz . j .′ = +  

( )zΓ
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Example: Determining 
Transmission Line Length  

 
A load terminating at transmission line has a normalized 
impedance 2.0 2.0Lz j′ = + .  What should the length  of 
transmission line be in order for its input impedance to be: 
 

a)  purely real (i.e., 0inx = )? 
 
b) have a real (resistive) part equal to one (i.e., 1.0inr = )? 

 
Solution: 
 
a) Find 2.0 2.0Lz j′ = +  on your Smith Chart, and then rotate 
clockwise until you “bump into” the contour 0x =  (recall this is 
contour lies on the rΓ  axis!). 
 
When you reach the 0x =  contour—stop! Lift your pencil and 
note that the impedance value of this location is purely real 
(after all, 0x = !). 
 
Now, measure the rotation angle that was required to move 
clockwise from 2.0 2.0Lz j′ = +  to an impedance on the  0x =  
contour—this angle is equal to 2β ! 
 
You can now solve for , or alternatively use the electrical 
length scale surrounding the Smith Chart. 
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One more important point—there are two possible solutions! 
 
Solution 1: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 2Lz j′ = +  

2 30
0 042.

β
λ

=

=
 

0x =  

4 2 0inz . j′ = +  

( )zΓ
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Solution 2: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 2Lz j′ = +  

2 210
0 292.

β
λ

=

=
 

0x =  

0 24 0inz . j′ = +  

( )zΓ
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b) Find 2.0 2.0Lz j′ = +  on your Smith Chart, and then rotate 
clockwise until you “bump into” the circle 1r =  (recall this circle 
intersects the center point or the Smith Chart!). 
 
When you reach the 1r =  circle—stop! Lift your pencil and note 
that the impedance value of this location has a real value equal 
to one (after all, 1r = !). 
 
Now, measure the rotation angle that was required to move 
clockwise from 2.0 2.0Lz j′ = +  to an impedance on the  1r =  
circle—this angle is equal to 2β ! 
 
You can now solve for , or alternatively use the electrical 
length scale surrounding the Smith Chart. 
 
Again, we find that there are two solutions! 
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Solution 1: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 82
0 114.

β
λ

=

=
 

1r =  

1 0 1 6inz . j .′ = −  

2 2Lz j′ = +  

( )zΓ
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Solution 2: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 339
0 471.

β
λ

=

=
 

1r =  

1 0 1 6inz . j .′ = +  

2 2Lz j′ = +  
( )zΓ
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Q: Hey!  For part b), the solutions resulted in 1 1.6inz j′ = −  and 
1 1.6inz j′ = + --the imaginary parts are equal but opposite!  Is 

this just a coincidence? 
 
A: Hardly!  Remember, the two impedance solutions must result 
in the same magnitude for Γ--for this example we find 
( ) 0.625zΓ = . 

 
Thus, for impedances where r =1 (i.e., 1z j x′ = + ): 
 

( )
( )
1 11

1 1 1 2
jx j xz

z jx j x
+ −′ −

Γ = = =
′ + + + +

 

 
and therefore: 
 

2 2
2

2 242
j x x

xj x
Γ = =

++
 

 
Meaning: 

2
2

2
4
1

x Γ
=

− Γ
 

 
of which there are two equal by opposite solutions! 
 

2

2
1

x Γ
= ±

− Γ
 

 
Which for this example gives us our solutions 1.6x = ±  . 
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Impedance & Admittance 
 
As an alternative to impedance Z, we can define a complex 
parameter called admittance Y: 
 

IY
V

=  

 
where V and I are complex voltage and current, respectively. 
 
Clearly, admittance and impedance are not independent 
parameters, and are in fact simply geometric inverses of each 
other: 

1 1Y Z
Z Y

= =  

 
Thus, all the impedance parameters that we have studied can 
be likewise expressed in terms of admittance, e.g.: 
 

( )
( )
1Y z

Z z
=            1

L
L

Y
Z

=            1
in

in
Y

Z
=  

 
Moreover, we can define the characteristic admittance Y0 of 
a transmission line as: 

( )
( )0

I zY
V z

+

+=  

 
And thus it is similarly evident that characteristic impedance 
and characteristic admittance are geometric inverses: 
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0 0
0 0

1 1Y Z
Z Y

= =  

 
As a result, we can define a normalized admittance value y ′ : 
 

0

Yy
Y

′ =  

 
An therefore (not surprisingly) we find: 
 

0

0

1ZYy
Y Z z

′ = = =
′
 

 
Note that we can express normalized impedance and 
admittance more compactly as: 
 

0y Y Z′ =            and           0z Z Y′ =  
 

Now since admittance is a complex value, it has both a real 
and imaginary component: 
 
 

Y G j B= +  
 
 

where: 
{ }Re  ConductanceY G =  

 
{ }Im  SusceptanceZ B =  
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Now, since Z R jX= + , we can state that: 
 

1G jB
R jX

+ =
+

 

 
 
 
 
 
 
 
 
 
 
 
 
 

A:  NOOOO!  We find that 1G R≠  and 1B X≠  
(generally).  Do not make this mistake! 
 

 
In fact, we find that  
 

2 2

2 2 2 2

1 R jXG jB
R jX R jX
R jX
R X

R Xj
R X R X

−
+ =

+ −

−
=

+

= −
+ +

 

Q: Yes yes, I see, and from this 
we can conclude: 
 

1G
R

=      and     1B
X
−

=  

 
and so forth.  Please speed this up 
and quit wasting my valuable time 
making such obvious statements! 
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Thus, equating the real and imaginary parts we find: 
 

2 2
RG

R X
=

+
       and     2 2

XB
R X
−

=
+

 

 
Note then that IF 0X =  (i.e., Z R= ), we get, as expected:  
 

1G
R

=        and     0B =  

 
And that IF 0R =  (i.e., Z R= ), we get, as expected: 
 

0G =        and     1B
X
−

=  

 
 
 

 

I wish I had a 
nickel for every 
time my software 
has crashed—oh 
wait, I do! 
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Admittance and  
the Smith Chart 

 
Just like the complex impedance plane, we can plot points and contours on the complex 
admittance plane: 
 
 
 
 
 
 
 
 
 
Q:  Can we also map these points and contours onto the complex Γ plane? 
 
A:  You bet!  Let’s first rewrite the refection coefficient function in terms of line 
admittance ( )Y z : 

( ) ( )
( )

0

0

Y Y zz
Y Y z

−
Γ =

+
 

 

Re {Y} G=  

Im {Y} B=  

G =75  

B =-30  120 60Y j= −  
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Rotation around the Smith Chart 
 
Thus, 

0

0

L
L

L

Y Y
Y Y

−
Γ =

+
       and         0

0

in
in

in

Y Y
Y Y

−
Γ =

+
 

 
We can therefore likewise express Γ  in terms of normalized admittance: 
 

00

0 0

1
1

1
1

Y Y y
Y Y Y Y y
Y Y −−

Γ =
+

′−
= =

′++
 

 
Note this can likewise be expressed as: 
 

1 1 1
1 1 1

jy y ye
y y y

π′ ′ ′− − −
Γ = = − =

′ ′ ′+ + +
 

 
Contrast this to the mapping between normalized impedance and Γ : 
 

1
1

z
z

′ −
Γ =

′ +
 

 
The difference between the two is simply the factor je π —a rotation of 180  around the 
Smith Chart!. 
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An example 
 
For example, let’s pick some load at random; 1z j′ = + , for instance. We know where this 
point is mapped onto the complex Γ plane; we can locate it on our Smith Chart. 
 
Now let’s consider a different load, and 
express it in terms of its  normalized 
admittance—an admittance that has the 
same numerical value as the impedance of 
the first load (i.e., 1y j′ = + ).   
 
Q: Where would this admittance 
value map onto the complex Γ 
plane? 
 
A: Start at the location 

1z j′ = +  on the Smith Chart, 
and then rotate around the 
center  180 .  You are now at 
the proper location on the 
complex Γ  plane for the 
admittance 1y j′ = + ! 
 

Re{ }Γ

Im{ }Γ

1z j′ = +  

1y j′ = +  

180  
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We of course could just directly calculate Γ from the equation above, and then plot that 
point on the Γ plane.   
 
Note the reflection coefficient for 1z j′ = +  is: 
 

1 11
1 1 1 2

j jz
z j j

′ + −−
Γ = = =

′ + + + +
 

 
while the reflection coefficient for  1y j′ = +  is: 
 

1 (1 )1
1 1 (1 ) 2

j jy
y j j

′ − + −−
Γ = = =

′+ + + +
 

 
Note the two results have equal magnitude, but are separated in phase by 180   ( 1 je π− = ).  
This means that the two loads occupy points on the complex Γ plane that are a 180  
rotation from each other! 
 
Moreover, this is a true statement not just for the point we randomly picked, but is true 
for any and all values of z ′  and y ′  mapped onto the complex Γ plane, provided that z y′ ′= . 
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Another example 
 
 
 
For example, the g =2 circle 
mapped on the complex plane 
can be determined by rotating 
the r =2 circle 180  around the 
complex Γ plane, and the b =-1 
contour can be found by 
rotating the x =-1 contour 180  
around the complex Γ plane. 
 
 
 
 
 
 
 
 
 
 
 

Re{ }Γ  

Im{ }Γ  

2r =  

2g =  

1x =  

1b =  

1z j′ = +  

1y j′ = +  
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The Admittance Smith Chart 
 
Thus, rotating all the 
resistance circles and 
reactance contours of 
the Smith Chart 180  
around the complex Γ 
plane provides us a 
mapping of complex 
admittance onto the 
complex Γ plane: 
 
 
Note that circles and 
contours have been 
rotated with respect 
to the complex Γ 
plane—the complex Γ 
plane remains 
unchanged! 
 
 
 

 

Im{ }Γ

Re{ }Γ  
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We’re not surprised! 
 
This result should not surprise us.  Recall the case where a transmission line of length 

4λ=  is terminated with a load of impedance Lz ′  (or equivalently, an admittance Ly ′).  The 
input impedance (admittance) for this case is: 
 

2
0 0

0

1in
in in L

L L L

Z Z ZZ z y
Z Z Z z

′ ′= ⇒ = ⇒ = =
′

 

 
In other words, when 4λ= , the input impedance is numerically equal to the load 
admittance—and vice versa!   
 
But note that if 4λ= , then 2β π= --a rotation around the Smith Chart of 180 ! 
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Example: Admittance 
Calculations with the  

Smith Chart 
 
Say we wish to determine the normalized admittance 1y ′  of the 
network below: 
 
 
 
 
 
 
 
 
 
First, we need to determine the normalized input admittance of 
the transmission line: 
 
 
 
 
 
 
 
 
 
 

0 37λ= .  

1 6 2 6
Lz
. j .
′ =

+
 

 

z = − 0z =

1y ′  0 1z ′ =  2

1 7 1 7
z
. j .
′ =

−
 

 

0 37λ= .  

1 6 2 6
Lz
. j .
′ =

+
 

 

z = − 0z =

iny ′  0 1z ′ =  
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There are two ways to determine this value! 
 
Method 1 
 
First, we express the load 1 6 2 6Lz . j .= +  in terms of its 
admittance 1L Ly z′ = .  We can calculate this complex value—or 
we can use a Smith Chart! 
 

 

1 6 2 6Lz . j .= +

0 17 0 28Ly . j .= −  
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The Smith Chart above shows both the impedance mapping 
(red) and admittance mapping (blue).  Thus, we can locate the 
impedance 1 6 2 6Lz . j .= +  on the impedance (red) mapping, and 
then determine the value of that same LΓ  point using the 
admittance (blue) mapping. 
 
From the chart above, we find this admittance value is 
approximately 0 17 0 28Ly . j .= − .   
 
Now, you may have noticed that the Smith Chart above, with 
both impedance and admittance mappings, is very busy and 
complicated.  Unless the two mappings are printed in different 
colors, this Smith Chart can be very confusing to use! 
 
But remember, the two mappings are precisely identical—they’re 
just rotated 180  with respect to each other.  Thus, we can 
alternatively determine Ly  by again first locating 1 6 2 6Lz . j .= +  
on the impedance mapping : 
 
 
 
 
 
 
 
 
 
 
 
  

1 6 2 6Lz . j .= +
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Then, we can rotate the entire Smith Chart 180 --while keeping 
the point LΓ location on the complex Γ plane fixed.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thus, use the admittance mapping at that point to determine 
the admittance value of LΓ . 
 
Note that rotating the entire Smith Chart, while keeping the 
point LΓ  fixed on the complex Γ plane, is a difficult maneuver to 
successfully—as well as accurately—execute. 
 
But, realize that rotating the entire Smith Chart 180  with 
respect to point LΓ  is equivalent to rotating 180  the point LΓ   
with respect to the entire Smith Chart!   
 
This maneuver (rotating the point LΓ ) is much simpler, and the 
typical method for determining admittance. 

 

0 17 0 28Ly . j .= −  
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Now, we can determine the value of iny ′  by simply rotating 
clockwise 2β  from Ly ′ , where 0 37. λ= : 
 
 
 
 
 
 
 
 
 

 

1 6 2 6Lz . j .= +

0 17 0 28Ly . j .= −  

180  
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Transforming the load admittance to the beginning of the 
transmission line, we have determined that 0 7 1 7iny . j .′ = − . 
 
Method 2 
 
Alternatively, we could have first transformed impedance Lz ′  to 
the end of the line (finding inz ′ ), and then determined the value 
of iny ′  from the admittance mapping (i.e., rotate 180  around the 
Smith Chart). 
 
 
 

 0 7 1 7iny . j .= −  0 17 0 28Ly . j .= −  

0 37. λ  

( )zΓ  
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The input impedance is determined after rotating clockwise 
2β , and is 0 2 0 5inz . j .′ = + . 
 
Now, we can rotate this point 180  to determine the input 
admittance value iny ′ : 
 
 
 
 
 
 
 
 

 

1 6 2 6Lz . j .= +

0 2 0 5inz . j .′ = +  

0 37. λ  

( )zΓ  
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The result is the same as with the earlier method--

0 7 1 7iny . j .′ = − .   
 
Hopefully it is evident that the two methods are equivalent.  In 
method 1 we first rotate 180 , and then rotate 2β .  In the 
second method we first rotate 2β , and then rotate 180 --the 
result is thus the same! 
 
Now, the remaining equivalent circuit is: 
 
 
 

 0 7 1 7iny . j .= −  

0 2 0 5inz . j .′ = +  

180  
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Determining 1y ′  is just basic circuit theory.  We first express 

2z ′  in terms of its admittance 2 21y z′ ′= .   
 
Note that we could do this using a calculator, but could likewise 
use a Smith Chart (locate 2z ′  and then rotate 180 ) to 
accomplish this calculation!  Either way, we find that 

2 0 3 0 3y . j .′ = + . 
 
 
 
 
 
 
 
Thus, 1y ′  is simply: 
 

( ) ( )
1 2

0 3 0 3 0 7 1 7
1 0 1 4

iny y y
. j . . j .

. j .

′ ′ ′= +

= + + −

= −

 

0 7 1 7
iny
. j .
′ =

−
 

 

1y ′  2

1 7 1 7
z
. j .
′ =

−
 

 

0 7 1 7
iny
. j .
′ =

−
 

 

1y ′  2

0 3 0 3
y

. j .
′ =

+
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