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2.5 – The Quarter-Wave Transformer 
 
Reading Assignment: pp. 73-76 
 
By now you’ve noticed that a quarter-wave length of 
transmission line ( 4λ= , 2β π= ) appears often in 
microwave engineering problems.   
 
 
 
 
HO: The Quarter-Wave Transformer 
 
Q:  Why does the quarter-wave matching network work—
after all, the quarter-wave line is mismatched at both ends? 
 
A: HO: Multiple Reflection Viewpoint 
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The Quarter-Wave 
Transformer 

 
Say the end of a transmission line with characteristic 
impedance Z0 is terminated with a resistive (i.e., real) load. 
 
 
 
 
 
 
We typically would like all power traveling down the line to be 
absorbed by the load RL.  
 
But if 0LR Z≠ , the line is unmatched and some of the incident 
power will be reflected. 
 
Q: Can all incident power be delivered to a resistive load if 

0LR Z≠ ?? 
 
A: Yes! We can insert a matching network between the 
transmission line and the load. 

 
RL 
 

Z0 

 
RL 
 

Z0 
Matching 
Network 
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A matching network is a lossless, 2-port device.  Its job is to 
transform the load RL ( or even ZL ) to a value Z0.   
 
In other words, we want the input impedance of the matching 
network to be Zin =Z0, so that 0inΓ = --no reflection! 
 
Since none of the incident power is reflected, and none is 
absorbed by the lossless matching network, it all must be 
absorbed by the load RL ! 
 
Q:  These matching networks sound too good to be true.  
Exactly how do we build them? 
 
A:   There are many methods and ways, but perhaps the 
easiest is the quarter-wave transformer. 

 
First, insert a transmission line with characteristic impedance 
Z1  and length 4λ=  (i.e., a quarter-wave line) between the load 
and the Z0 transmission line.  
 
 
 
 
 
 
 
 
 
The 4λ  line is the matching network! 
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Q:  But what about the characteristic impedance Z1; what 
should its value be?? 
 
A: Remember, the quarter wavelength case is one of the special 
cases that we studied.  We know that the input impedance of 
the quarter wavelength line is: 
 

( ) ( )2 2
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Z Z
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Thus, if we wish for Zin to be numerically equal to Z0, we find: 
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Solving for Z1, we find its required value to be: 
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In other words, the characteristic impedance of the quarter 
wave line is the geometric average Z0 and RL! 
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Therefore, a 4λ  line with characteristic impedance 

1 0 LZ Z R= will match a transmission line with characteristic 
impedance Z0 to a resistive load RL. 
 
 
 
 
 
 
 
 
 
Thus, all power is delivered to load RL ! 
 
 
Important Note:  We find that 0inZ Z=  only if the matching if 
the quarter-wave transmission line is exactly one-quarter 
wavelength in length 4λ= . 
 
The problem with this, of course, is that a physical length  of 
transmission line is exactly one-quarter wavelength at only one 
frequency f  ! 
 
Remember, wavelength is related to frequency as: 
 

1pv
f f LC

λ = =  

 
where vp is the propagation velocity of the wave . 

1 0 LZ Z R=  

4
λ=  
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For example, assuming that vp = c (c = the speed of light in a 
vacuum), one wavelength at 1 GHz is 30 cm ( 0.3 mλ = ), while one 
wavelength at 3 GHz is 10 cm ( 0.1 mλ = ).  As a result, a 
transmission line length 7.5 cm=  is a quarter wavelength for a 
signal at 1GHz only.   
 
Thus, a quarter-wave transformer provides a perfect match 
( 0inΓ = ) at one and only one signal frequency!  
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Multiple Reflection 
Viewpoint 

 
The quarter-wave transformer brings up an interesting 
question in µ-wave engineering. 
 
 
 
 
 
 
 
 
 
 
 

Q:  Why is there no reflection at z = −  ?  It appears 
that the line is mismatched at both 0z =  and z = − . 
 
A:  In fact there are reflections at these mismatched 
interfaces—an infinite number of them! 
 
 
 

 
First, lets define a few terms: 

1 0 LZ Z R=  

4
λ=  

 
RL 
 

0Z  0inΓ =  
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Γ1  = partial reflection coefficient of a wave incident on the 
z = −  interface from the Z0 line: 
 

     1 0
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Γ2  = partial reflection coefficient  of a wave incident on the 
z = −  interface from the Z1 line: 
 

  0 1
2 1

0 1

Z Z
Z Z

−
Γ = = −Γ

+
 

 
 
 
Γ3  = partial reflection coefficient  of a wave incident on the 

0z = −  interface from the Z1 line: 
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T1  = partial transmission coefficient  of a wave incident on the 
z = −  interface from the Z0 line: 
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T2  = partial transmission coefficient of a wave incident on the 
z = −  interface from the Z1 line: 
 
 

0
2
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Now let’s try to intemperate what physically happens when the 
incident voltage wave: 
 
 
 
 
 
 
 
 
reaches the interface at z = − . 
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1.   At z = − , the characteristic impedance of the transmission 
line changes from Z0 to Z1.  This mismatch creates a reflected 
wave: 
 
 
 
 
 
 
 
where 1 1

r iV V= Γ . 
 
2.   However, a portion of the incident wave is transmitted ( 1T ) 
across the interface at z = − , this wave travels a distance of 

90β =  to the load at 0z = , where a portion of it is reflected 
( 3Γ ).  This wave travels back 90β =  to the interface at 
z = − , where a portion is again transmitted ( 2T ) across into the 
Z0 transmission line—another reflected wave ( 2

rV )!  
 
 
 
 
 
 
where we have found that traveling 2 180β =  has produced a 
minus sign in our result:  
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3.  However, a portion of this second wave is also reflected 
( 2Γ ) back into the Z1 transmission line at z = − , where it again 
travels to 90β =  the load, is partially reflected ( 3Γ ), travels 

90β = back to  z = − , and is partially transmitted into Z0 
( 2T )—our third reflected wave! 
 
 
 
 
 
 
 
where: 
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n.  We can see that this “bouncing” back and forth can go on 
forever, with each trip launching a new reflected wave into the 
Z0 transmission line.  
 
Note however, that the power associated with each successive 
reflected wave is smaller than the previous, and so eventually, 
the power associated with the reflected waves will diminish to 
insignificance! 
 
Q:   But, why then is  0Γ =  ? 
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A:    Each reflected wave r
nV is a coherent wave.  That is, they 

all oscillate at same frequency ω ; the reflected waves differ 
only in terms of their magnitude and phase.   
 
Therefore, to determine the total reflected wave, we must 
perform a coherent summation of each reflected wave—a 
operation easily performed since we have expressed our waves 
with complex notation: 
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It can be shown that this infinite series converges, with the 
result: 
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Thus, the total reflection coefficient is: 
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Using our definitions, it can likewise be shown that the 
numerator of the above expression is: 
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It is evident that the numerator  (and therefore Γ ) will be zero 
if: 

2
1 0 1 0L LZ Z R Z Z R− ⇒ =  

 
Just as we expected! 
 
Physically, this results insures that all the reflected waves add 
coherently together to produce a zero value! 
 
A simple example of this phenomenon is the addition of two 
waves with equal magnitude and opposite phase (i.e., their phase 
difference is 180 ). 
 

( ) ( ) ( ) ( )180 0cos t cos t cos t cos tω ω ω ω+ + = − =  
 
Note all of our transmission line analysis has been steady-state 
analysis.  We assume our signals are sinusoidal, of the form 
exp( )j tω .  Note this signal exists for all time t—the signal is 
assumed to have been “on” forever, and assumed to continue on 
forever.   
 
In other words, in steady-state analysis, all the multiple 
reflections have long since occurred, and thus have reached a 
steady state—the reflected wave is zero! 

 
 

 




