2.6 - Generator and Load Mismatches

Reading Assignment: pp. 77-79

Q: How is the incident wave $V^+(z)$ generated on a transmission line?

A:

HO: A Transmission Line Connecting Source and Load

Q: So, how can we determine the power delivered by a source?

A: HO: Delivered Power

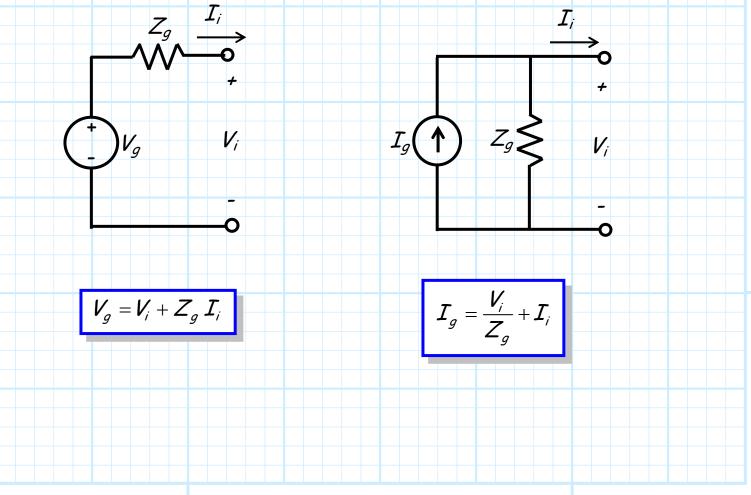
Q: So how do we insure that the delivered power is as large as possible?

A: <u>HO: Special Cases of Source and Load Impedance</u>

<u>A Transmission Line</u> <u>Connecting Source & Load</u>

We can think of a transmission line as a conduit that allows **power** to flow **from** an **output** of one device/network **to** an **input** of another.

To simplify our analysis, we can model the **input** of the device **receiving** the power with it input impedance (e.g., Z_L), while we can model the device **output delivering** the power with its Thevenin's or Norton's equivalent circuit.



 V_{g}

Typically, the power source is modeled with its **Thevenin's** equivalent; however, we will find that the **Norton's** equivalent circuit is useful if we express the remainder of the circuit in terms of its **admittance** values (e.g., $Y_0, Y_L, Y(z)$).

 Z_0

z = 0

 I_i

+

Vi

 $\mathbf{Z} = -\ell$

 Z_{g}

Recall from the telegrapher's equations that the current and voltage along the transmission line are:

$$V(z) = V_0^+ e^{-j\beta z} + V_0^- e^{+j\beta z}$$

$$I(z) = \frac{V_0^+}{Z_0} e^{-j\beta z} - \frac{V_0^-}{Z_0} e^{+j\beta z}$$

At z = 0, we enforced the **boundary condition** resulting from Ohm's Law:

$$Z_{L} = \frac{V_{L}}{I_{L}} = \frac{V(z = 0)}{I(z = 0)} = \frac{(V_{0}^{+} + V_{0}^{-})}{\left(\frac{V_{0}^{+}}{Z_{0}} - \frac{V_{0}^{-}}{Z_{0}}\right)}$$



So therefore:

$$V(z) = V_0^+ \left[e^{-j\beta z} + \Gamma_L e^{+j\beta z} \right]$$

 $\frac{V_{0}^{-}}{V_{0}^{+}} = \frac{Z_{L} - Z_{0}}{Z_{L} + Z_{0}} \doteq \Gamma_{L}$

$$I(z) = \frac{V_0^+}{Z_0} \left[e^{-j\beta z} - \Gamma_L e^{+j\beta z} \right]$$

We are left with the question: just what is the value of complex constant V_0^+ ?!?

This constant depends on the signal source! To determine its exact value, we must now apply boundary conditions at $z = -\ell$.

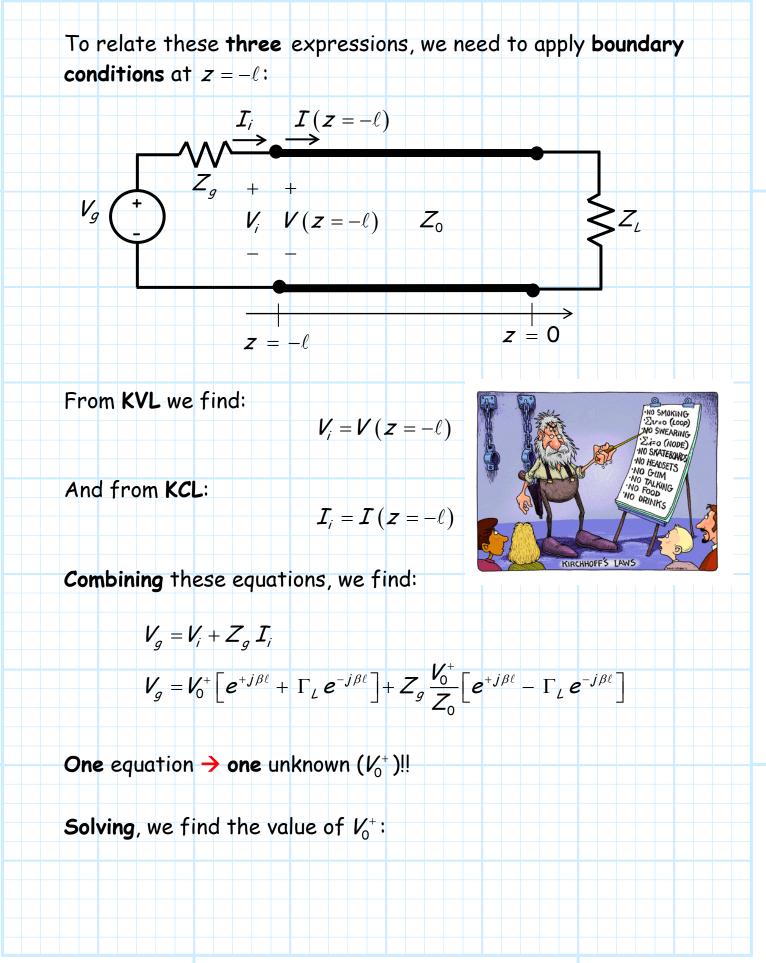
We know that at the **beginning** of the transmission line:

$$V(z = -\ell) = V_0^+ \left[e^{+j\beta\ell} + \Gamma_L e^{-j\beta\ell} \right]$$

$$I(z = -\ell) = \frac{V_0^+}{Z_0} \left[e^{+j\beta\ell} - \Gamma_L e^{-j\beta\ell} \right]$$

Likewise, we know that the source must satisfy:

 $V_g = V_i + Z_g I_i$



$$V_{0}^{*} = V_{g} e^{-j\beta t} \frac{Z_{0}}{Z_{0}(1 + \Gamma_{m}) + Z_{g}(1 - \Gamma_{m})}$$
where:

$$\Gamma_{m} = \Gamma(z = -\ell) = \Gamma_{L} e^{-j2\beta t}$$
Note this result looks different than the equation in your textbook (eq. 2.71):

$$V_{0}^{*} = V_{g} \frac{Z_{0}}{Z_{0} + Z_{g}} \frac{e^{-j\beta t}}{(1 - \Gamma_{L}\Gamma_{g}e^{-j2\beta t})}$$
where:

$$\Gamma_{g} = \frac{Z_{g} - Z_{0}}{Z_{g} + Z_{0}}$$
I like my expression better.
Although the two equations are equivalent, my expression is explicitly written in terms of $\Gamma_{in} = \Gamma(z = -\ell)$ (a very useful, precise, and unambiguous value), while the book's expression is written in terms of this so-called "source reflection coefficient" Γ_{g} (a misleading, confusing, ambiguous, and mostly useless value).

Specifically, we might be **tempted** to equate Γ_g with the value $\Gamma(z = -\ell) = \Gamma_{in}$, but it is **not** $(\Gamma_g \neq \Gamma(z = -\ell))!$

There is one **very important** point that must be made about the result:

$$V_{0}^{+} = V_{g} e^{-j\beta\ell} \frac{Z_{0}}{Z_{0} \left(1 + \Gamma_{in}\right) + Z_{g} \left(1 - \Gamma_{in}\right)}$$

And that is—the wave $V_0^+(z)$ incident on the load Z_L is actually dependent on the value of load Z_L !!!!!

Remember:

$$\Gamma_{in} = \Gamma(\boldsymbol{z} = -\ell) = \Gamma_L \boldsymbol{e}^{-j2\beta\ell}$$

We tend to think of the incident wave $V_0^+(z)$ being "caused" by the source, and it is certainly true that $V_0^+(z)$ depends on the source—after all, $V_0^+(z) = 0$ if $V_g = 0$. However, we find from the equation above that it **likewise** depends on the value of the load!

Remember, this solution is a **steady-state** solution. Just like the **multiple reflection** viewpoint for a $\lambda/4$ transformer, we can (sort of) view the waves on this transmission line as "bouncing" back and forth until the boundary conditions are satisfied at **both** ends.

Thus we **cannot**—in general—consider the incident wave to be the "**cause**" and the reflected wave the "**effect**". Instead, each wave must obtain the proper **amplitude** (e.g., V_0^+, V_0^-) so that the boundary conditions are satisfied at **both** the beginning and end of the transmission line. V_q

 Z_{g}

Zin

 $z = -\ell$

Delivered Power

Q: If the purpose of a transmission line is to transfer **power** from a source to a load, then exactly how much power is **delivered** to Z_L for the circuit shown below ??

 $\underline{I(z)}$

 Z_0

A: We of course could determine V_0^+ and V_0^- , and then determine the power absorbed by the load (P_{abs}) as:

V(z)

$$P_{abs} = \frac{1}{2} \operatorname{Re} \left\{ V \left(z = 0 \right) I^* \left(z = 0 \right) \right\}$$

However, if the transmission line is **lossless**, then we know that the power delivered to the load must be **equal** to the power "delivered" to the **input** (P_{in}) of the transmission line:

$$P_{abs} = P_{in} = \frac{1}{2} \operatorname{Re} \left\{ V \left(z = -\ell \right) I^* \left(z = -\ell \right) \right\}$$

 Z_{L}

However, we can determine this power without having to solve for V_0^+ and V_0^- (i.e., V(z) and I(z)). We can simply use our knowledge of circuit theory!

We can **transform** load Z_L to the beginning of the transmission line (by direct calculation—or with a Smith Chart!), so that we can replace the transmission line with its **input impedance** Z_{in} :

$$I(z = -\ell)$$

$$V_{g} + V_{g} + V(z = -\ell) \neq Z_{in} = Z(z = -\ell)$$

$$-$$

Note by voltage division we can determine:

$$V(z = -\ell) = V_g \frac{Z_{in}}{Z_g + Z_{in}}$$

And from Ohm's Law we conclude:

$$I(z = -\ell) = \frac{v_g}{Z_g + Z_{in}}$$

1/

And thus, the **power** P_{in} delivered to Z_{in} (and thus the **power** P_{abs} delivered to the load Z_L) is:

$$P_{abs} = P_{in} = \frac{1}{2} \operatorname{Re} \left\{ V(z = -\ell) I^{*}(z = -\ell) \right\}$$
$$= \frac{1}{2} \operatorname{Re} \left\{ V_{g} \frac{Z_{in}}{Z_{g} + Z_{in}} \frac{V_{g}^{*}}{(Z_{g} + Z_{in})^{*}} \right\}$$
$$= \frac{1}{2} \frac{|V_{g}|^{2}}{|Z_{g} + Z_{in}|^{2}} \operatorname{Re} \left\{ Z_{in} \right\}$$
$$= \frac{1}{2} |V_{g}|^{2} \frac{|Z_{in}|^{2}}{|Z_{g} + Z_{in}|^{2}} \operatorname{Re} \left\{ Y_{in} \right\}$$

Note that we could **also** determine P_{abs} from our **earlier** expression:

$$P_{abs} = \frac{|V_0^+|^2}{2Z_0} (1 - |\Gamma_L|^2)$$

But we would of course have to **first** determine V_0^+ (?):

$$V_{0}^{+} = V_{g} e^{-j\beta\ell} \frac{Z_{0}}{Z_{0} \left(1 + \Gamma_{in}\right) + Z_{g} \left(1 - \Gamma_{in}\right)}$$

<u>Special Cases of Source</u> and Load Impedance

Let's look at **specific cases** of Z_g and Z_L , and determine how they affect V_0^+ and P_{abs} .

$$Z_g = Z_0$$

For this case, we find that V_0^+ simplifies greatly:

$$V_{0}^{+} = V_{g} e^{-j\beta\ell} \frac{Z_{0}}{Z_{0} (1 + \Gamma_{in}) + Z_{g} (1 - \Gamma_{in})}$$
$$= V_{g} e^{-j\beta\ell} \frac{Z_{0}}{Z_{0} (1 + \Gamma_{in}) + Z_{0} (1 - \Gamma_{in})}$$
$$= V_{g} e^{-j\beta\ell} \frac{1}{1 + \Gamma_{in} + 1 - \Gamma_{in}}$$
$$= \frac{1}{2} V_{g} e^{-j\beta\ell}$$

Look at what this says!

It says that the incident wave in this case is **independent** of the load attached at the other end!

Thus, for the **one** case $Z_g = Z_0$, we in fact can consider $V^+(z)$ as being the result of the source alone, and then the reflected wave $V^-(z)$ as being the result of this stimulus.

Remember, the complex value V_0^+ is the value of the incident wave evaluated at the **end** $(z_l=0)$ of the transmission line $(V_0^+ = V^+ (z = 0))$. We can likewise determine the value of the incident wave at the **beginning** of the transmission line (i.e., $V^+ (z = -l))$. For this case, where $Z_g = Z_0$, we find that this value is very simply stated (!):

$$V^{+}(z = -\ell) = V_{0}^{+} e^{-j\beta(z = -\ell)}$$
$$= \left(\frac{1}{2} V_{g} e^{-j\beta\ell}\right) e^{+j\beta\ell}$$
$$= \frac{V_{g}}{2}$$

Likewise, we find that the delivered power for this case can be simply stated as:

$$P_{abs} = \frac{|V_0^+|^2}{2 Z_0} (1 - |\Gamma_L|^2)$$
$$= \frac{|V_g^+|^2}{8 Z_0} (1 - |\Gamma_L^+|^2)$$

$$Z_{L} = Z_{0}$$

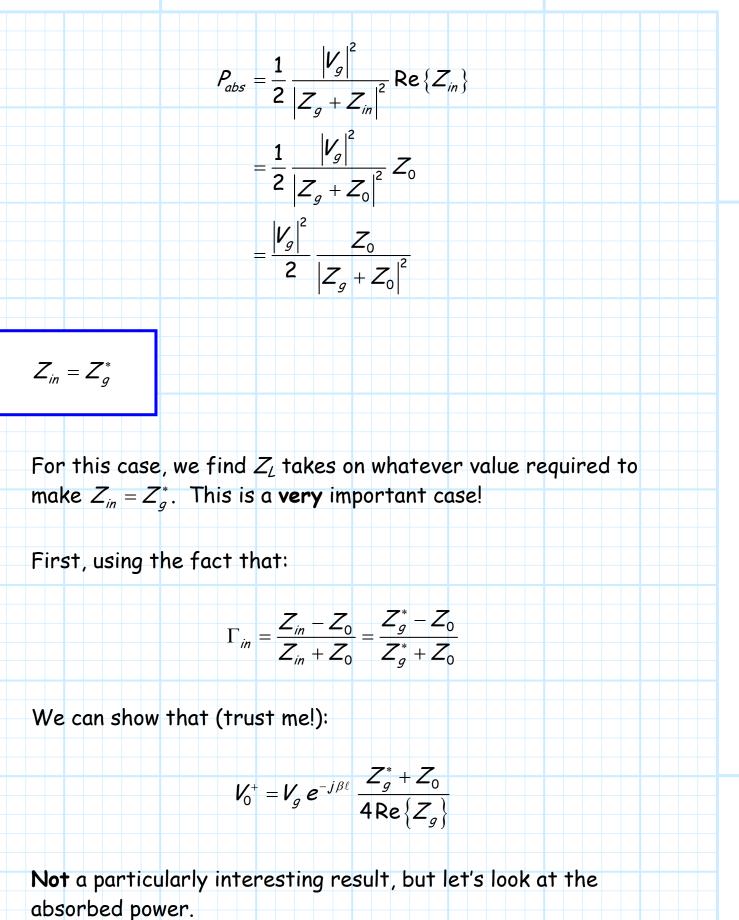
In this case, we find that $\Gamma_L = 0$, and thus $\Gamma_{in} = 0$. As a result:

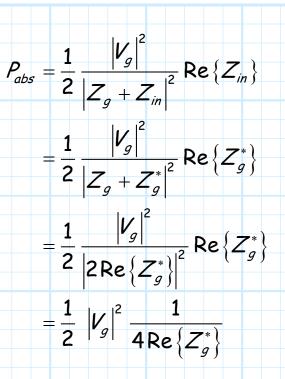
$$V_0^+ = V_g e^{-j\beta\ell} \frac{Z_0}{Z_0 (1 + \Gamma_{in}) + Z_g (1 - \Gamma_{in})}$$
$$= V_g e^{-j\beta\ell} \frac{Z_0}{Z_0 + Z_g}$$

Likewise, we find that:

$$P_{abs} = \frac{|V_0^+|^2}{2 Z_0} (1 - |\Gamma_L|^2)$$
$$= \frac{|V_0^+|^2}{2 Z_0}$$
$$= \frac{|V_g^-|^2}{2 Z_0} \frac{(Z_0^-)^2}{|Z_0^- + Z_g^-|^2}$$
$$= \frac{|V_g^-|^2}{2 Z_0^- |Z_0^- + Z_g^-|^2}$$

Note that this result can likewise be found by recognizing that $Z_{in} = Z_0$ when $Z_L = Z_0$:

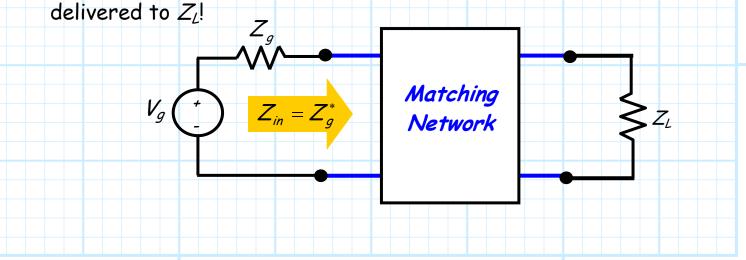




Although this result does not look particularly interesting either, we find the result is very important!

It can be shown that—for a given V_g and Z_g —the value of input impedance Z_{in} that will absorb the largest possible amount of power is the value $Z_{in} = Z_g^*$.

This case is known as the **conjugate match**, and is essentially the goal of every matching network—after all, the largest possible power delivered to Z_{in} is the **largest possible** power delivered to Z_{l} !



There are **two** very important things to understand about this result!

Very Important Thing #1

Consider again the terminated transmission line:

Recall that if $Z_{L} = Z_{0}$, the **reflected** wave will be **zero**, and the absorbed power will be:

$$P_{abs} = \frac{\left|V_{g}\right|^{2}}{2} \frac{Z_{0}}{\left|Z_{0} + Z_{g}\right|^{2}}$$

But note if $Z_{L} = Z_{0}$, then the input impedance $Z_{in} = Z_{0}$ —b ut then $Z_{in} \neq Z_{g}^{*}$ (generally)! In other words, $Z_{L} = Z_{0}$ does **not** (generally) result in a **conjugate match**, and thus setting $Z_{L} = Z_{0}$ does **not** result in maximum power absorption!

Jim Stiles

 Z_{L}

Q: Wait! This makes **no** sense to me! A load value of $Z_L = Z_0$ will **minimize** the reflected wave $(P^- = 0)$ —**all** of the incident power will be absorbed. Any other value of $Z_L = Z_0$ will result in **some** of the incident wave being reflected—how in the world could this **increase** absorbed power?

After all, just **look** at the expression for absorbed power:

 $P_{abs} = \frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}} \left(1 - \left|\Gamma_{L}\right|^{2}\right)$

Clearly, this value is maximized when $\Gamma_L = 0$ (i.e., when $Z_L = Z_0$)!!! Isn't it ????

A: You are forgetting one very important fact! Although it is true that the load impedance Z_{l} affects the **reflected** wave power P^{-} , the value of Z_{l} —as we have shown in this handout **likewise** helps determine the value of the **incident** wave (i.e., the value of P^{+}) as well.

Thus, the value of Z_{L} that minimizes P^{-} will **not** generally maximize P^{+} , **nor** will the value of Z_{L} that maximizes P^{+} likewise minimize P^{-} .

Instead, the value of Z_{L} that maximizes the **absorbed** power is, by definition, the value that maximizes the **difference** $P^{+} - P^{-}$.

We find that this value of Z_L is the value that makes Z_{in} as "close" as possible to the **ideal** case of $Z_{in} = Z_g^*$.

Q: Yes, but what about the case where $Z_g = Z_0$? For **that** case, we determined that the incident wave **is** independent of Z_L . Thus, it would seem that at least for that case, the **delivered** power would be maximized when the **reflected** power was minimized (i.e., $Z_L = Z_0$).

A: True! But think about what the input impedance would be in that case— $Z_{in} = Z_0$. Oh by the way, that provides a conjugate match ($Z_{in} = Z_0 = Z_g^*$)!

Thus, in some ways, the case $Z_g = Z_0 = Z_L$ (i.e., both source and load impedances are equal to Z_0) is ideal. A conjugate match occurs, the incident wave is independent of Z_L , there is no reflected wave, and all the math simplifies quite nicely:

$$V_{0}^{+} = \frac{1}{2} V_{g} e^{-j\beta\ell} \qquad P_{abs} = \frac{|V_{g}|^{-1}}{8 Z_{0}}$$

2

Very Important Thing #2

Note the conjugate match criteria says:

Given V_g and Z_g , maximum power transfer occurs when $Z_{in} = Z_g^*$.

It does NOT say:

Given V_g and Z_{in} , maximum power transfer occurs when $Z_g^* = Z_{in}$.

This last statement is in fact false!

A factual statement is this:

Given V_g and Z_{in} , maximum power transfer occurs when:

$$Re\{Z_g\} = 0$$
 and $Im\{Z_g\} = -Im\{Z_{in}\}$

A fact that is evident when observing the expression:

$$P_{abs} = \frac{1}{2} \frac{|V_g|^2}{|Z_g + Z_{in}|^2} \operatorname{Re}\{Z_{in}\}$$

In other words, given a choice, use a source with the smallest possible output resistance (given that V_q remains constant).