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4.2 – The Scattering Matrix 
 
Reading Assignment: pp. 174-183 
 
Admittance and Impedance matricies use the quantities I(z), 
V(z), and Z(z) (or Y(z)). 
 
Q:  Is there an equivalent matrix for transmission line 
activity expressed in terms of ( )V z+ , ( )V z− , and ( )zΓ  ? 
 
A:   
 
HO: The Scattering Matrix 
 
Q: Can we likewise determine something physical about our 
device or network by simply looking at its scattering matrix? 
 
A: HO: Matched, Reciprocal, Lossless 
 
Example: A Lossless, Reciprocal Device 
 
Q:   
 
A: 
 
 
Example: Determining the Scattering Matrix 
Example: The Scattering Matrix 
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The Scattering Matrix 
 
At “low” frequencies, we can completely characterize a linear 
device or network using an impedance matrix, which relates the 
currents and voltages at each device terminal to the currents 
and voltages at all other terminals. 
 
 
 

But, at microwave frequencies, it 
is difficult to measure total 
currents and voltages!  

 
 
 

*  Instead, we can measure the magnitude and phase of 
each of the two transmission line waves ( ) and ( )V z V z+ − . 
 
*  In other words, we can determine the relationship 
between the incident and reflected wave at each device 
terminal to the incident and reflected waves at all other 
terminals. 

 
These relationships are completely represented by the 
scattering matrix.  It completely describes the behavior of a 
linear, multi-port device at a given frequency ω , and a given line 
impedance Z0. 
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Consider now the 4-port microwave device shown below: 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that we have now characterized transmission line activity 
in terms of incident and “reflected” waves.  Note the negative 
going “reflected” waves can be viewed as the waves exiting the 
multi-port network or device. 
 

 Viewing transmission line activity this way, we can fully  
characterize a multi-port device by its scattering parameters! 
 
 

( )1 1V z+  

( )4 4V z+  

( )3 3V z+  

( )2 2V z+  

port 1 

( )1 1V z−  

( )4 4V z−  

( )3 3V z−  

( )2 2V z−  

port 3 

port 
4 

port 
2 

4-port 
microwave 

device 
Z0 Z0 

Z0 

Z0 

3 3Pz z=  

2 2Pz z=  

1 1Pz z=  

4 4Pz z=  
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Say there exists an incident wave on port 1 (i.e., ( )1 1 0V z+ ≠ ), 
while the incident waves on all other ports are known to be zero 
(i.e., ( ) ( ) ( )2 2 3 3 4 4 0V z V z V z+ + += = = ).   
 

 
Say we measure/determine the 
voltage of the wave flowing into  
port 1, at the port 1 plane (i.e., 
determine ( )1 1 1PV z z+ = ).   

 
 
Say we then measure/determine 
the voltage of the wave flowing 
out of port 2, at the port 2 
plane (i.e., determine 

( )2 2 2PV z z− = ).   
 
The complex ratio between 1 1 1 2 2 2( ) and ( )P PV z z V z z+ −= =  is know 
as the scattering parameter S21: 
 

( )
2

2 1

1

022 2 2 02
21

1 1 1 01 01

( )
( )

P
P P

P

j z
j z zP

j z
P

V eV z z VS e
V z z V e V

β
β

β

+−− −
+ +

−+ + +

=
= = =

=
 

 
Likewise, the scattering parameters S31 and S41 are: 
 
 

3 3 3 4 4 4
31 41

1 1 1 1 1 1

( )( )           and            
( ) ( )

P P

P P

V z zV z zS S
V z z V z z

−−

+ +

==
= =

= =
 

 
 

( )1 1V z+  port 1 

Z0 

1 1P
z z=  

( )1 1 1 pV z z+

+

=

−

 

( )2 2V z−  port 2 

Z0 

2 2P
z z=  

( )2 2 2pV z z−

+

=

−
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We of course could also define, say, scattering parameter S34 
as the ratio between the complex values 4 4 4( )PV z z+ =  (the wave 
into port 4) and 3 3 3( )PV z z− =  (the wave out of port 3), given 
that the input to all other ports (1,2, and 3) are zero. 
 
Thus, more generally, the ratio of the wave incident on port n to 
the wave emerging from port m is: 
 
 

( )( )         (given that   0  for all )
( )

m m mP
mn k k

n n nP

V z zS V z k n
V z z

−
+

+

=
= = ≠

=
 

 
 
 
Note that frequently the port positions are assigned a zero 
value (e.g., 1 20, 0P Pz z= = ).  This of course simplifies the 
scattering parameter calculation: 
 

0
0 0

0
00

( 0)       
( 0)

j
mm m m

mn j
n n nn

V eV z VS
V z VV e

β

β

+−− −

−+ ++

=
= = =

=
 

 
We will generally assume that the port 
locations are defined as 0nPz = , and thus use 
the above notation.  But remember where this 
expression came from! 

 
 
 

  
 

 

Microwave
    lobe 
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A:  Terminate all other ports with a matched load! 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( )1 1V z+  

( )3 3 0V z+ =  

( )3 3 0V z+ =  

( )2 2 0V z+ =  

( )1 1V z−  

( )4 4V z−  

( )3 3V z−  

( )2 2V z−  

4-port 
microwave 

device 
Z0 Z0 

Z0 

Z0 

4 0LΓ =  

3 0LΓ =  

2 0LΓ =  

Q:  But how do we ensure 
that only one incident wave 
is non-zero ? 
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Note that if the ports are terminated in a matched load (i.e., 
0LZ Z= ), then 0nLΓ =  and therefore: 

 
   ( ) 0n nV z+ =  

 
In other words, terminating a port ensures 
that there will be no signal incident on 
that port!  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A: Actually, both statements are correct! You must be careful 
to understand the physical definitions of the plus and minus 
directions—in other words, the propagation directions of waves 
( )n nV z+   and  ( )n nV z− !  

 

 

 
Q: Just between you and me, I think you’ve messed this up!  In all 
previous handouts you said that if  0LΓ = , the wave in the minus 
direction would be zero: 
 

( ) 0    if    0LV z− = Γ =  
 
but just now you said that the wave in the positive direction would 
be zero:  

( ) 0    if    0LV z+ = Γ =  
 
Of course, there is no way that both statements can be correct!  
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( ) 0     if    0LV z− = Γ =  

For example, we originally analyzed this case: 
 
 
 
 
 
 
 
  
 
In this original case, the wave incident on the load is ( )V z+  
(plus direction), while the reflected wave is ( )V z−  (minus 
direction).  
 
Contrast this with the case we are now considering: 
 
 
 
 
 
 
 
 
 
For this current case, the situation is reversed.  The wave 
incident on the load is now denoted as ( )n nV z−  (coming out of 
port n), while the wave reflected off the load is now denoted as 
( )n nV z+  (going into port n ). 

 
As a result, ( ) 0n nV z+ =  when 0nLΓ = ! 

LΓ  

( )V z−  

( )V z+  

Z0 

nLΓ  

( )n nV z+  

( )n nV z−  

Z0 

port n 

N-port 
Microwave 
Network 
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Perhaps we could more generally state that for some load LΓ : 
 
 

( ) ( )reflected incident
L L LV z z V z z= = Γ =  

 
 
 
 
 
 
 
 
 
 
 
Now, back to our discussion of S-parameters. We found that if 

0nPz =  for all ports n, the scattering parameters could be 
directly written in terms of wave amplitudes 0nV +  and 0mV − . 
 

( )0

0

      (given that   0  for all )m
mn k k

n

VS V z k n
V

−
+

+= = ≠  

 
 

Which we can now equivalently state as: 
 
 

0

0

      (given that all ports, except port , are )m
mn

n

VS n
V

−

+= matched  

 
 

For each case, you must be able to 
correctly identify the mathematical 
statement describing the wave incident on, 
and reflected from, some passive load.  
 
Like most equations in engineering, the 
variable names can change, but the physics 
described by the mathematics will not!  

 



03/07/06 The Scattering Matrix 723 9/13 

Jim Stiles The Univ. of Kansas Dept. of EECS 

One more important note—notice that for the matched ports 
(i.e., those ports with no incident wave), the voltage of the 
exiting wave is also the total voltage! 
 

( ) 0 0

0

0

0
(for all terminated ports)

n n

m

m

j z j z
m m m m

j z
m
j z

m

V z V e V e
V e

V e

β β

β

β

− ++ −

+−

+−

= +

= +

=

 

 
Thus, the value of the exiting wave at each terminated port is 
likewise the value of the total voltage at those ports: 
 

( ) 0 0

0

0

0
0

(for all terminated ports)

m m m

m

m

V V V
V

V

+ −

−

−

= +

= +

=

 

 
And so, we can express some of the scattering parameters 
equivalently as: 
 
 

( )
0

0
      (for port  , , for )m

mn
n

VS m i.e. m n
V += ≠matched   

 
 
You might find this result helpful if attempting to determine 
scattering parameters where m n≠  (e.g., S21, S43, S13), as we can 
often use traditional circuit theory to easily determine the 
total port voltage ( )0mV . 
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However, we cannot use the expression above to determine the 
scattering parameters when  m n=   (e.g., S11, S22, S33).  
 

Think about this! The scattering parameters for these 
cases are: 

0

0

     n
nn

n

VS
V

−

+=  

 
Therefore, port n is a port where there actually is some 
incident wave 0nV +  (port n is not terminated in a matched load!).   
And thus, the total voltage is not simply the value of the exiting 
wave, as both an incident wave and exiting wave exists at port n. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( )4 4 0V z+ =

( )3 3 0V z+ =

( )2 2 0V z+ =

( )1 1V z−

( )4 4V z−

( )3 3V z−

( )2 2V z−

4-port 
microwave 

device 
Z0 Z0 

Z0 

Z0 

4 0LΓ =

3 0LΓ =

2 0LΓ =

( )1 1 0V z+ ≠

( ) ( ) ( )1 1 10 0 0V V V+ −= + ( ) ( )3 30 0V V −=
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Typically, it is much more difficult to determine/measure the 
scattering parameters of the form Snn , as opposed to 
scattering parameters of the form Smn (where m n≠ ) where 
there is only an exiting wave from port m !   
 
We can use the scattering matrix to determine the 
solution for a more general circuit—one where the ports 
are not terminated in matched loads! 
 
 
 
 
 
 
A: Since the device is linear, we can apply superposition.  
The output at any port due to all the incident waves is 
simply the coherent sum of the output at that port due 
to each wave! 
 
For example, the output wave at port 3 can be 
determined by (assuming 0nPz = ): 
 

03 33 03 32 02 31 0134 04V S V S V S V S V− + + + += + + +  
 
More generally, the output at port m of an N-port device 
is: 
 

( )0 0
1

0
N

m mn n nP
n

V S V z− +

=

= =∑  

 
 

 

Q:  I’m not understanding the importance 
scattering parameters.  How are they 
useful to us microwave engineers? 
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This expression can be written in matrix form as: 
 

− +=V S V  
 
Where −V is the vector: 
 

01 02 03 0
T

NV ,V ,V , ,V− − − − −⎡ ⎤= ⎣ ⎦V …  
 
 
and +V  is the vector: 
 

01 02 03 0
T

NV ,V ,V , ,V+ + + + +⎡ ⎤= ⎣ ⎦V …  
 

 
Therefore S  is the scattering matrix: 
 

11 1

1

n

m mn

S S

S S

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

S
…

# % #
"

 

 
 
The scattering matrix is a N  by N  matrix that completely 
characterizes a linear, N-port device.  Effectively, the 
scattering matrix describes a multi-port device the way that LΓ  
describes a single-port device (e.g., a load)! 
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But beware! The values of the scattering matrix for a 
particular device or network, just like LΓ , are 
frequency dependent!  Thus, it may be more 
instructive to explicitly write: 

 

( )
( ) ( )

( ) ( )

11 1

1

n

m mn

S S

S S

ω ω
ω

ω ω

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

S
…

# % #
"

 

 
Also realize that—also just like ΓL—the scattering matrix 
is dependent on both the device/network and the Z0 
value of the transmission lines connected to it. 
 
Thus, a device connected to transmission lines with 

0 50Z = Ω  will have a completely different scattering 
matrix than that same device connected to transmission 
lines with 0 100Z = Ω !!! 
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Matched, Lossless, 
Reciprocal Devices 

 
As we discussed earlier, a device can be lossless or reciprocal.  
In addition, we can likewise classify at being matched.   
 
Let’s examine each of these three characteristics, and how 
they relate to the scattering matrix. 

 
 

Matched 
 
A matched device is another way of saying that the input 
impedance at each port is equal to Z0 when all other ports are 
terminated in matched loads.  As a result, the reflection 
coefficient of each port is zero—no signal will be come out of a 
port if a signal is incident on that port (and only that port). 
 
In other words, we want: 
 

0    for all m mm mV S V m− += =  
 

a result that occurs when: 
 
 

= 0    for all  if matchedmmS m  
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We find therefore that a matched device will exhibit a 
scattering matrix where all diagonal elements are zero. 
 
Therefore: 

0 0.1 0.2
0.1 0 0.3
0.2 0.3 0

j

j

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

S  

 
is an example of a scattering matrix for a matched, three port 
device. 
 
 
Lossless 
 
Recall for a lossless device, all of the power that delivered to 
each device port must eventually finds its way out! 
 
In other words, power is not absorbed by the network—no  
power to be converted to heat! 
 
Consider, for example, a four-port device.  Say a signal is 
incident on port 1, and that all other ports are terminated.  The 
power incident on port 1 is therefore: 
 

2
1

1
02

V
P Z

+
+ =  

 
while the power leaving the device at each port is: 
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2 2
1 1 2

1 1
0 02 2

m m
m m

V S V
P S PZ Z

− −
− += = =  

 
The total power leaving the device is therefore: 
 

( )

1 2 3 4
222 2

11 21 31 411 1 1 1
222 2

11 21 31 41 1

outP P P P P
S P S P S P S P
S S S S P

− − − −

+ + + +

+

= + + +

= + + +

= + + +

 

 
Note therefore that if the device is lossless, the output power 
will be equal to the input power, i.e., 1outP P += .  This is true only 
if: 

222 2
11 21 31 41 1S S S S+ + + =  

 
If the device is lossless, this will likewise be true for each of 
the other ports: 

 
222 2

12 22 32 42
22 2 2

13 23 33 43
2 2 2 2

14 24 34 44

1

1

1

S S S S
S S S S
S S S S

+ + + =

+ + + =

+ + + =

 

 
We can state in general then: 
 

2

1
1 for all 

N

mn
m

S n
=

=∑  

 
In fact, it can be shown that a lossless device will have a unitary 
scattering matrix, i.e.: 
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= if losslessHS S I  

 
 
where H  indicates conjugate transpose and I  is the identity 
matrix.   
 
The columns of a unitary matrix form an orthonormal set—that 
is, the magnitude of each column is 1 (as shown above) and 
dissimilar column vector are mutually orthogonal.  In other 
words, the inner product (i.e., dot product) of dissimilar vectors 
is zero: 
 

1 1 1 1 2 2
1

0 for all 
N

i j i j i j Ni Nj
n

S S S S S S S S i j∗ ∗ ∗ ∗

=

= + + + = ≠∑  

 
An example of a (unitary) scattering matrix for a lossless 
device is: 
 
 
 
 
 
 
Reciprocal 
 
 
Recall reciprocity results when we build a passive (i.e., 
unpowered) device with simple materials.  
 

1 3
2 2

31
2 2
3 1

2 2
3 12 2

0 0
0 0
0 0

0 0

j
j

j
j

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

S  
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For a reciprocal network, we find that the elements of the 
scattering matrix are related as: 
 

mn nmS S=  
 
For example, a reciprocal device will have 21 12S S=  or 

32 23S S= .  We can write reciprocity in matrix form as: 
 
 

= if reciprocalTS S  
 

 
where T  indicates (non-conjugate) transpose. 
 
An example of a scattering matrix describing a reciprocal, but 
lossy and non-matched device is: 
 
 
 

0.10 0.20 0.050.40
0.40 0 0.100.20
0.20 0.10 0.30 0.120

0.05 0.12 00.10

j
jj

j j
j

−−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥− − −
⎢ ⎥−⎣ ⎦

S  
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Example: A Lossless, 
Reciprocal Network 

 
A lossless, reciprocal 3-port device has S-parameters of 

11 1 2S = , 31 1 2S = , and 33 0S = .  It is likewise known that all 
scattering parameters are real. 
 

 Find the remaining 6 scattering parameters. 
 
 
 
 
 
A:  Yes I have!  Note I said the device was lossless and 
reciprocal! 

 
Start with what we currently know: 
 

1
2 12 13

21 22 23
1

322 0

S S
S S S

S

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

S  

 
Because the device is reciprocal, we then also know: 
 

21 12S S=                1
13 31 2S S= =               32 23S S=  

 
 

 

Q:  This problem is clearly 
impossible—you have not provided 
us with sufficient information! 
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And therefore: 
 

1 1
2 21 2

21 22 32
1

322 0

S
S S S

S

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

S  

 
Now, since the device is lossless, we know that: 
 

( ) ( )

22 2
11 21 31

2221 1
2 21 2

1 S S S

S

= + +

= + +
 

 
22 2

12 22 32
22 2

21 22 32

1 S S S
S S S

= + +

= + +
 

 

( ) ( )

2 2 2
13 23 33

2221 1
2 32 2

1 S S S

S

= + +

= + +
 

and: 
 

11 12 21 22 31 32

1 1
2 21 21 22 322

0 S S S S S S
S S S S

∗ ∗ ∗

∗ ∗ ∗

= + +

= + +
 

 

( ) ( )
11 13 21 23 31 33

1 1 1
2 21 322 2

0
0

S S S S S S
S S

∗ ∗ ∗

∗

= + +

= + +
 

 

( ) ( )
12 13 22 23 32 33

1
21 22 32 322

0
0

S S S S S S
S S S S

∗ ∗ ∗

∗

= + +

= + +
 

 
 

Columns have 
unit magnitude. 

Columns are 
orthogonal. 
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These six expressions simplify to: 
 

1
221S =  

 
22 2

21 22 321 S S S= + +  
 

1
32 2S =  

 
1 1
2 21 21 22 3220 S S S S= + +  

 
( )

1
21 322 20 S S= +  

 
( )1

21 22 3220 S S S= +  
 

where we have used the fact that since the elements are all 
real, then 21 21S S∗ =  (etc.). 

 
Q 
 
 
 
 
     A:  Actually, we have six real equations and six real 

unknowns, since scattering element has a magnitude and 
phase.  In this case we know the values are real, and thus 

the   phase is either 0  or   180  (i.e., 0 1je =  or 
1je π = − ); however, we do not know which one! 

 
From the first three equations, we can find the magnitudes: 
 

 

Q: I count the about expressions and find 6 
equations yet only a paltry 3 unknowns.   Your 
typical buffoonery appears to have led to an over-
constrained condition for which there is no solution! 
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1
221S =                1

222S =             1
32 2S =  

 
and from the last three equations we find the phase: 
 

1
221S =                1

222S =             1
32 2S = −  

 
Thus, the scattering matrix for this lossless, reciprocal device 
is: 

1 1 1
2 2 2

1 1 1
2 2 2

1 1
2 2 0

−

−

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

S  
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Example: Determining the  
Scattering Matrix 

 
Let’s determine the scattering matrix of this two-port device: 
 
 
 
 
 
 
 
 
 
The first step is to terminate port 2 with a matched load, and 
then determine the values: 
 

( )1 1 1PV z z− =       and      ( )2 2 2PV z z− =  
 
in terms of ( )1 1 1PV z z+ = . 
 
 
 
 
 
 
 
 
 

0Z 0Z2Z0 

1 0Pz =

z1 

2 0Pz =

z2 

0Z 2Z0 

1 0Pz =

z1 

2 0Pz =

Z0 ( )2 2 0V z
+

=

−

( )1 1V z
+

−
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Recall that since port 2 is matched, we know that: 
 

( )2 2 2 0PV z z+ = =  
And thus: 
 

( ) ( ) ( )
( )

( )

2 2 2 2 2 2

2 2

2 2

0 0 0
0 0

0

V z V z V z
V z

V z

+ −

−

−

= = = + =

= + =

= =

 

 
In other words, we simply need to determine ( )2 2 0V z =  in order 
to find ( )2 2 0V z− = ! 
 
However, determining ( )1 1 0V z− =  is a bit trickier. Recall that: 
 

( ) ( ) ( )1 1 1 1 1 1V z V z V z+ −= +  
 

Therefore we find  ( ) ( )1 1 1 10 0V z V z−= ≠ = ! 
 
Now, we can simplify this circuit: 

 
 
 
 
 
 
 
 
And we know from the telegraphers equations: 
 

0Z
0

2
3

Z

 

1 0Pz =

z1 

( )1 1V z
+

−
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( ) ( ) ( )
1 1

1 1 1 1 1 1

01 01
j z j z

V z V z V z
V e V e

+ −

− β + β+ −

= +

= +
 

 
Since the load 02 3Z  is located at 1 0z = , we know that the 
boundary condition leads to: 
 

( ) ( )1 1
1 1 01

j z j z
LV z V e e− β + β+= + Γ  

 
where: 

( )
( )
( )
( )

2
3 0 0

2
3 0 0

2
3

2
3

1
3

5
3

1
1

0 2

L
Z Z
Z Z

.

−
=

+

−
=

+
−

=

= −

Γ

 

Therefore: 
 

( ) 1
1 1 01

j zV z V e − β+ +=     and   ( ) ( ) 1
1 1 01 0 2 j zV z V . e + β− += −  

 
and thus: 

( ) ( )0
1 1 01 010 jV z V e V− β+ + += = =    

     
 ( ) ( ) ( )0

1 1 01 010 0 2 0 2jV z V . e . V+ β− + += = − = −  
 
We can now determine 11S  ! 
 

( )
( )

1 1 01
11

1 1 01

0 0 2 0 2
0

V z . VS .
V z V

− +

+ +

= −
= = = −

=
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Now its time to find ( )2 2 0V z− = ! 
 
Again, since port 2 is terminated, the incident wave on port 2 
must be zero, and thus the value of the exiting wave at port 2 is 
equal to the total voltage at port 2: 
 

( ) ( )2 2 2 20 0V z V z− = = =  
 

This total voltage is relatively easy to determine.  Examining 
the circuit, it is evident that ( ) ( )1 1 2 20 0V z V z= = = . 
 
 
 
 
 
 
 
 
Therefore: 
 

( ) ( )
( ) ( )( )

( )
( )

2 2 1 1

0 0
01

01

01

0 0

0 2

1 0 2
0 8

j j

V z V z

V e . e

V .
V .

− β + β+

+

+

= = =

= −

= −

=

 

 
And thus the scattering parameter 21S  is: 
 

( )
( )

2 2 01
21

1 1 01

0 0 8 0 8
0

V z . VS .
V z V

− +

+ +

=
= = =

=
 

0Z
2Z0 

1 0Pz =

z1 

2 0Pz =

Z0 ( )2 2 0V z
+

=

−

( )1 1 0V z
+

−

=
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Now we just need to find 12S  and 22S . 
 
Q: Yikes! This has been an awful lot of work, and you mean that 
we are only half-way done!? 
 
A:  Actually, we are nearly finished!  Note that this circuit is 
symmetric—there is really no difference between port 1 and 
port 2.  If we “flip” the circuit, it remains unchanged!  
 
 
 
 
 
 
 
 
 
Thus, we can conclude due to this symmetry that: 
 

11 22 0 2S S .= = −  
and: 

21 12 0 8S S .= =  
 

Note this last equation is likewise a result of reciprocity. 
 
Thus, the scattering matrix for this two port network is: 
 

0 2 0 8
0 8 0 2

. .
. .

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

S  

 
 

0Z 0Z2Z0 

2 0Pz =

z2 

1 0Pz =

z1 
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Example: The Scattering 
Matrix 

 
Say we have a 3-port network that is completely characterized 
at some frequency ω  by the scattering matrix: 
 

0.0 0.2 0.5
0.5 0.0 0.2
0.5 0.5 0.0

S
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
A matched load is attached to port 2, while a short circuit has 
been placed at port 3: 
 
 
 
 
 
 

 

1 (z)V +

3 (z)V +

2 (z)V +

port 1 

1 (z)V −

3 (z)V −

2 (z)V −

port 3 

port 
2 

3-port 
microwave 

device 
Z0 Z0 

Z0 

3 0Pz =

2 0Pz =

1 0Pz =

0Z Z=

0Z =



3/3/2005 Example The Scattering Matrix.doc 2/6 

Jim Stiles The Univ. of Kansas Dept. of EECS  

Because of the matched load at port 2 (i.e., 0LΓ = ), we know 
that: 

022 2

2 2 02

( 0) 0
( 0)

VV z
V z V

++

− −

=
= =

=
 

 
and therefore: 

02 0V + =  
 
 
 
 
 
 

 
 
 
 
NO!! Remember, the signal 2 ( )V z−  is incident on the matched 
load, and 2 ( )V z+  is the reflected wave from the load (i.e., 2 ( )V z+  
is incident on port 2).  Therefore, 02 0V + =  is correct! 
 
Likewise, because of the short circuit at port 3 ( 1LΓ = − ): 
 

3 3 03

3 3 03

( 0) 1
( 0)

V z V
V z V

+ +

− −

=
= = −

=
 

 
and therefore: 
 

03 03V V+ −= −  

You’ve made a terrible mistake! 
Fortunately, I was here to 
correct it for you—since 0LΓ = , 
the constant 02V −  (not 02V + ) is 
equal to zero. 



3/3/2005 Example The Scattering Matrix.doc 3/6 

Jim Stiles The Univ. of Kansas Dept. of EECS  

Problem: 
 
a)  Find the reflection coefficient at port 1, i.e.: 
 

01
1

01

V
V

−

+Γ  

 
b)  Find the transmission coefficient from port 1 to port 2, i.e.,  
 

02
21

01

VT
V

−

+  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
NO!!!  The above statement is not correct! 
 

Remember, 1 1 11V V S− + =  only if ports 2 and 3 are 
terminated in matched loads!  In this problem  port 3 
is terminated with a short circuit. 

I am amused by the trivial 
problems that you apparently 
find so difficult.  I know that: 
 

01
1 11

01

0.0V S
V

−

+Γ = = =  

and 
 

02
21 21

01

0.5VT S
V

−

+= = =  
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Therefore: 
01

1 11
01

V S
V

−

+Γ = ≠  

and similarly: 
 

02
21 21

01

VT S
V

−

+= ≠  

 
To determine the values 21T  and 1Γ , we must start with the 
three equations provided by the scattering matrix: 
 

01 02 03

02 01 03

03 01 02

0 2 0 5

0 5 0 2

0 5 0 5

V . V . V

V . V . V

V . V . V

− + +

− + +

− + +

= +

= +

= +

 

 
and the two equations provided by the attached loads: 
 

02

03 03

0V

V V

+

+ −

=

= −
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We can divide all of these equations by 01V + , resulting in: 
 

01 02 03
1

01 01 01

02 03
21

01 01

03 02

01 01

02

01

03 03

01 01

0 2 0 5

0 5 0 2

0 5 0 5

0

V V V. .
V V V

V VT . .
V V

V V. .
V V

V
V

V V
V V

− + +

+ + +

− +

+ +

− +

+ +

+

+

+ −

+ +

= +

= = +

= +

=

= −

Γ =

 

 
Look what we have—5  equations and 5 unknowns!  Inserting 
equations 4 and 5 into equations 1 through 3, we get: 
 

01 03
1

01 01

02 03
21

01 01

03

01

0 5

0 5 0 2

0 5

V V.
V V

V VT . .
V V

V .
V

− +

+ +

− +

+ +

−

+

= −

= = −

=

Γ =
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Solving, we find: 
 

( )

( )

1

21

0 5 0 5 0 25

0 5 0 2 0 5 0 4

. . .

T . . . .

= − = −

= − =

Γ

 

 
 
 
 




