4.5 - Signal Flow Graphs

Reading Assignment: pp. 189-197

Q: Using individual device scattering parameters to analyze a complex microwave network results in a lot of **messy** math! Isn't there an **easier** way?

A: Yes! We can represent a microwave network with its **signal flow graph**.

HO: SIGNAL FLOW GRAPHS

Then, we can **decompose** this graph using a set of standard **rules**.

HO: SERIES RULE

HO: PARALLEL RULE

HO: SELF-LOOP RULE

HO: SPLITTING RULE

It's sort of a **graphical** way to do algebra! Let's do some examples:

EXAMPLE: DECOMPOSITION OF SIGNAL FLOW GRAPHS

EXAMPLE: SIGNAL FLOW GRAPH ANALYSIS

Signal Flow graphs can likewise help us understand the

CIPTITI	or to	analy	o and	lon	doci	onl				
Simhi		unuty	ze and	101.	uesi	<u>yn</u>				
	Tur	Door	C 4 TT 0							
	IHE	PROPA	<u>GATIO</u>		FKTF	5				