5.4 - The Quarter-Wave Transformer

Reading Assignment: pp. 240-243

Yes! This is the same quarter wave transformer that we studied **earlier**—but there is **more** for us to learn!

HO: The Quarter-Wave Tansformer-Yet Again

<u>The $\lambda/4$ Transformer-</u>

<u>Yet Again</u>

Let's go back and again look at the quarter wave transformer.

This time we will look at it more **critically**, and discover that this matching network has a few **problems**!

Problem #1

Recall the matching solution was limited to loads that were **purely real**! I.E.: $Z_L = R_L + j0$

Of course, this is a BIG problem, as most loads will have a **reactive** component!

Fortunately, we have a relatively easy solution to this problem, as we can always add some length ℓ of transmission line to the load to make the impedance completely real:

 Z'_{l} Z_0, β Rin Z_L r'_{in2} \leftarrow 2 possible solutions!

However, remember that the input impedance will be purely real at only **one** frequency!

R_{in}

 $\rightarrow \leftarrow$

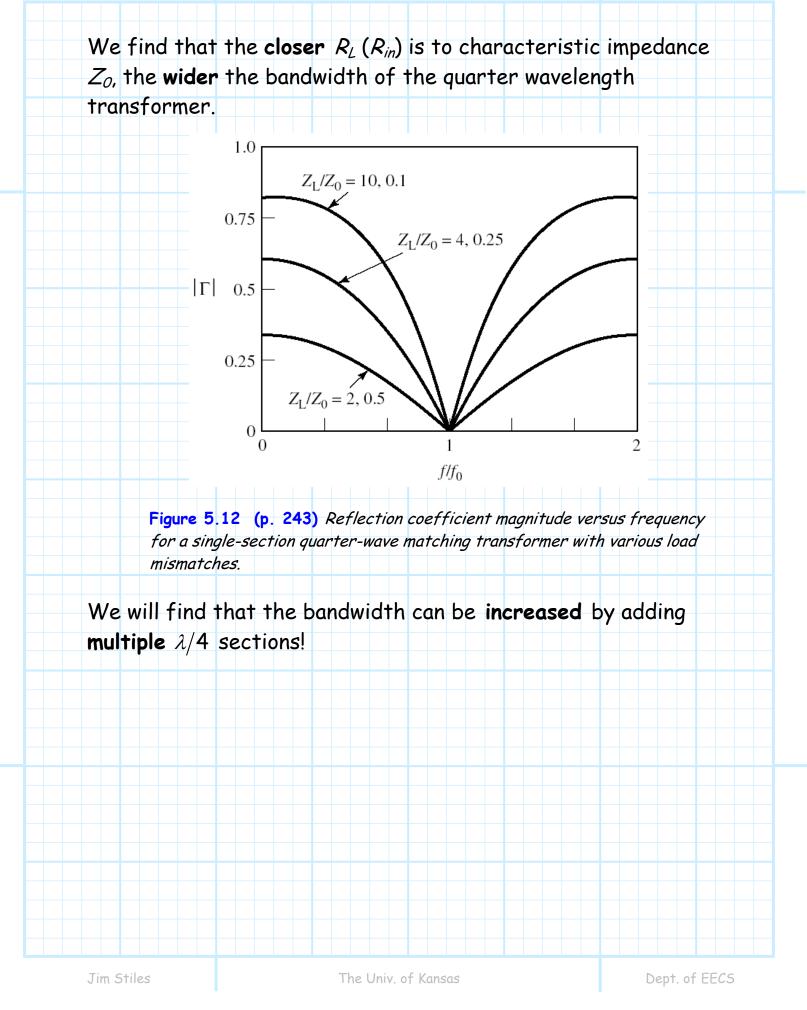
 Z_0

We can then build a quarter-wave transformer to **match** the line Z_0 to resistance R_{in} :

- λ**/**4 —

 $\langle Z_1 = \sqrt{Z_0 R_{in}} \rangle$

Problem #2


 $Z_0 \qquad Z_{in} = Z_0$

The matching bandwidth is narrow !

In other words, we obtain a **perfect** match at precisely the frequency where the length of the matching transmission line is a **quarter**-wavelength.

But remember, this length can be a quarter-wavelength at just one frequency!

As the signal frequency (i.e., wavelength) changes, the **electrical** length of the matching transmission line changes. It will **no longer** be a **quarter** wavelength, and thus we **no longer** will have a **perfect** match.

