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Admittance and  
the Smith Chart 

 
Just like the complex impedance plane, we can plot points and contours on the complex 
admittance plane: 
 
 
 
 
 
 
 
 
 
Q:  Can we also map these points and contours onto the complex Γ plane? 
 
A:  You bet!  Let’s first rewrite the refection coefficient function in terms of line 
admittance ( )Y z : 
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Rotation around the Smith Chart 
 
Thus, 
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We can therefore likewise express Γ  in terms of normalized admittance: 
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Note this can likewise be expressed as: 
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Contrast this to the mapping between normalized impedance and Γ : 
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The difference between the two is simply the factor je π —a rotation of 180  around the 
Smith Chart!. 
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An example 
 
For example, let’s pick some load at random; 1z j′ = + , for instance. We know where this 
point is mapped onto the complex Γ plane; we can locate it on our Smith Chart. 
 
Now let’s consider a different load, and 
express it in terms of its  normalized 
admittance—an admittance that has the 
same numerical value as the impedance of 
the first load (i.e., 1y j′ = + ).   
 
Q: Where would this admittance 
value map onto the complex Γ 
plane? 
 
A: Start at the location 

1z j′ = +  on the Smith Chart, 
and then rotate around the 
center  180 .  You are now at 
the proper location on the 
complex Γ  plane for the 
admittance 1y j′ = + ! 
 

Re{ }Γ

Im{ }Γ

1z j′ = +  

1y j′ = +  

180  
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We of course could just directly calculate Γ from the equation above, and then plot that 
point on the Γ plane.   
 
Note the reflection coefficient for 1z j′ = +  is: 
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while the reflection coefficient for  1y j′ = +  is: 
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Note the two results have equal magnitude, but are separated in phase by 180   ( 1 je π− = ).  
This means that the two loads occupy points on the complex Γ plane that are a 180  
rotation from each other! 
 
Moreover, this is a true statement not just for the point we randomly picked, but is true 
for any and all values of z ′  and y ′  mapped onto the complex Γ plane, provided that z y′ ′= . 
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Another example 
 
 
 
For example, the g =2 circle 
mapped on the complex plane 
can be determined by rotating 
the r =2 circle 180  around the 
complex Γ plane, and the b =-1 
contour can be found by 
rotating the x =-1 contour 180  
around the complex Γ plane. 
 
 
 
 
 
 
 
 
 
 
 

Re{ }Γ  

Im{ }Γ  

2r =  

2g =  

1x =  

1b =  

1z j′ = +  

1y j′ = +  
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The Admittance Smith Chart 
 
Thus, rotating all the 
resistance circles and 
reactance contours of 
the Smith Chart 180  
around the complex Γ 
plane provides us a 
mapping of complex 
admittance onto the 
complex Γ plane: 
 
 
Note that circles and 
contours have been 
rotated with respect 
to the complex Γ 
plane—the complex Γ 
plane remains 
unchanged! 
 
 
 

 

Im{ }Γ

Re{ }Γ  
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We’re not surprised! 
 
This result should not surprise us.  Recall the case where a transmission line of length 

4λ=  is terminated with a load of impedance Lz ′  (or equivalently, an admittance Ly ′).  The 
input impedance (admittance) for this case is: 
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In other words, when 4λ= , the input impedance is numerically equal to the load 
admittance—and vice versa!   
 
But note that if 4λ= , then 2β π= --a rotation around the Smith Chart of 180 ! 
 
 
 
 
 
 


