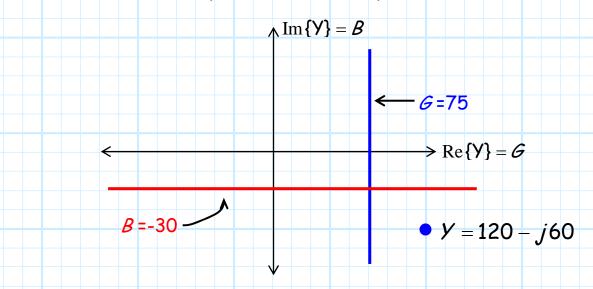
Admittance and the Smith Chart

Just like the complex impedance plane, we can plot points and contours on the complex admittance plane:



Q: Can we also map **these** points and contours onto the complex Γ plane?

A: You bet! Let's first rewrite the refection coefficient function in terms of line admittance Y(z):

$$\Gamma(z) = \frac{Z(z) - Z_0}{Z(z) + Z_0}$$

$$= \frac{1/Y(z) - 1/Y_0}{1/Y(z) - 1/Y_0} \left(\frac{Y(z)Y_0}{Y(z)Y_0} \right)$$

$$= \frac{Y_0 - Y(z)}{Y_0 + Y(z)}$$

Thus,

$$\Gamma_{L} = \frac{Y_0 - Y_L}{Y_0 + Y_L}$$
 and $\Gamma_{in} = \frac{Y_0 - Y_{in}}{Y_0 + Y_{in}}$

We can therefore likewise express Γ in terms of **normalized** admittance:

$$\Gamma = \frac{Y_0 - Y}{Y_0 + Y} = \frac{1 - Y/Y_0}{1 + Y/Y_0} = \frac{1 - Y'}{1 + Y'}$$

Note this can likewise be expressed as:

$$\Gamma = \frac{1-y'}{1+y'} = -\frac{y'-1}{y'+1} = e^{j\pi} \frac{y'-1}{y'+1}$$

Contrast this to the mapping between normalized impedance and Γ :

$$\Gamma = \frac{z'-1}{z'+1}$$

The difference between the two is simply the factor $e^{j\pi}$ —a rotation of 180° around the Smith Chart!.

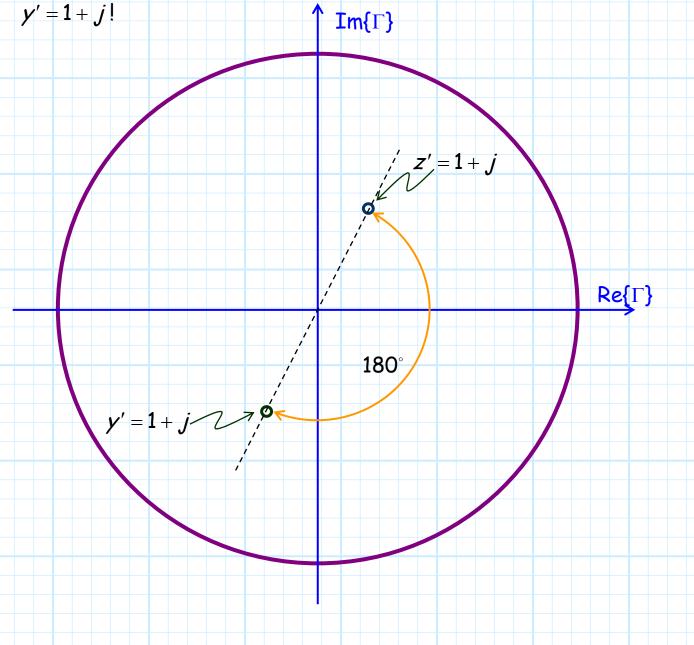
For example, let's pick some load at random; z'=1+j, for instance. We know where this point is mapped onto the complex Γ plane; we can locate it on our **Smith Chart**.

Now let's consider a different load, and express it in terms of its normalized admittance—an admittance that has the same

numerical value as the impedance of the first load (i.e., y' = 1 + j).

Q: Where would this admittance value map onto the complex Γ plane?

A: Start at the location z'=1+j on the Smith Chart, and then rotate around the center 180° . You are now at the proper location on the complex Γ plane for the admittance



We of course could just directly calculate Γ from the equation above, and then plot that point on the Γ plane.

Note the reflection coefficient for z' = 1 + j is:

$$\Gamma = \frac{z'-1}{z'+1} = \frac{1+j-1}{1+j+1} = \frac{j}{2+j}$$

while the reflection coefficient for y' = 1 + j is:

$$\Gamma = \frac{1-y'}{1+y'} = \frac{1-(1+j)}{1+(1+j)} = \frac{-j}{2+j}$$

Note the two results have **equal** magnitude, but are separated in **phase** by 180° ($-1=e^{j\pi}$). This means that the two loads occupy points on the complex Γ plane that are a 180° **rotation** from each other!

Moreover, this is a true statement not just for the point we randomly picked, but is true for any and all values of z' and y' mapped onto the complex Γ plane, provided that z' = y'.

For example, the g=2 circle mapped on the complex plane can be determined by **rotating** the r=2 circle 180° around the complex Γ plane, and the b=-1 contour can be found by rotating the x=-1 contour 180° around the complex Γ plane.

 $Re\{\Gamma\}$

x = 1

z'=1+j

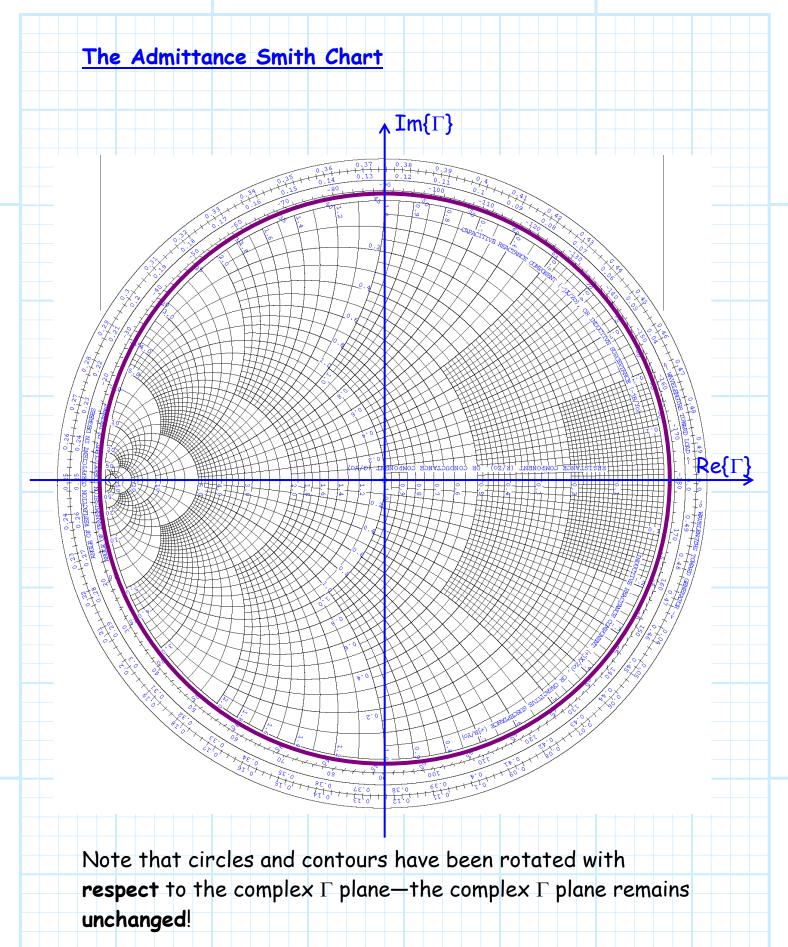
g=2

1 _ 2

y'=1+j

 $b_{i}=1$

Thus, rotating all the resistance circles and reactance contours of the Smith Chart 180° around the complex Γ plane provides us a mapping of complex admittance onto the complex Γ plane:



This result should **not** surprise us. Recall the case where a transmission line of length $\ell = \lambda/4$ is terminated with a load of impedance z'_{ℓ} (or equivalently, admittance y'_{ℓ}). The input impedance (admittance) for this case is:

$$Z_{in} = \frac{Z_0^2}{Z_L} \Rightarrow \frac{Z_{in}}{Z_0} = \frac{Z_0}{Z_L} \Rightarrow z'_{in} = \frac{1}{z'_L} = y'_L$$

In other words, when $\ell = \lambda/4$, the input impedance is numerically equal to the load admittance—and vice versa!

But note that if $\ell=\lambda/4$, then $2\beta\ell=\pi$ --a rotation around the Smith Chart of $180^{\circ}!$