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Circuit Symmetry

One of the most powerful concepts in for evaluating circuits is
that of symmetry. Normal humans have a conceptual
understanding of symmetry, based on an esthetic perception
of structures and figures.
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On the other hand, mathematicians (as they are wont to do) have
defined symmetry in a very precise and unambiguous way. Using a branch
of mathematics called Group Theory, first developed by the young
genius Evariste Galois (1811-1832), symmetry is defined by a set of
operations (a group) that leaves an object unchanged.

+ Initially, the symmeftric "objects” under consideration by Galois were
polynomial functions, but group theory can likewise be applied to
evaluate the symmetry of structures.
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For example, consider an ordinary equilateral triangle; we find that it
is a highly symmetric object!
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Q: Obviously this is true. We don’t need a mathematician to tell us that!

A: Yes, but how symmetric is it? How does the symmetry of an equilateral triangle
compare to that of an isosceles triangle, a rectangle, or a square?

To determine its level of symmetry, let's first label each corner as corner 1, corner 2, and
corner 3.

First, we note that the triangle exhibits a plane of reflection symmetry:
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Thus, if we "reflect” the triangle across this plane we gef:

==

Note that although corners 1 and 3 have changed places, the triangle itself remains
unchanged—that is, it has the same shape, same size, and same orientation after
reflecting across the symmetric planel

Mathematicians say that these two triangles are congruent.

Note that we can write this reflection operation as a permutation (an exchange of
position) of the corners, defined as:

1-3
22
31
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Q: But wait! Isn't there is more than just one plane of reflection symmetry?

A: Definitely! There are two more:

In addition, an equilateral triangle exhibits rotation symmetry! Rotating the friangle 120°
clockwise also results in a congruent triangle:

152
2—->3
31
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Likewise, rotating the triangle 120° counter-clockwise results in a congruent triangle:

1-3
21
3572

Additionally, there is one more operation that will result in a congruent triangle—do
nothing!

151
22
3—>3

This seemingly trivial operation is known as the identity operation, and is an element of
every symmetry group.

These 6 operations form the dihedral symmetry group D3 which has order six (i.e., it
consists of six operations). An object that remains congruent when operated on by any

and all of these six operations is said to have D3 symmetry.

- An equilateral triangle has D3 symmetry!
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By applying a similar analysis to a isosceles triangle, rectangle, and square, we find that:

A An isosceles trapezoid has D; symmetry, a dihedral group of order 2.
- A rectangle has D, symmetry, a dihedral group of order 4.
“ A square has D; symmetry, a dihedral group of order 8.

Thus, a square is the most symmetric object of the four we have discussed; the isosceles
trapezoid is the least.

Q: Well that's all just fascinating—but just what the heck does this have to do with
microwave circuits!?!

A: Plentyl Useful circuits often display high levels of symmetry.



For example, consider these D; symmetric multi-port circuits:
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Or this circuit with D2 symmetry:

® VvV \/ °
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which is congruent under these permutations:

153 152 154
24 21 2—>3
31 354 352

42 43 41



Or this circuit with D4 symmetry:
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which is congruent under these permutations:

1-3 152 154 154 151
24 2—1 23 22 2—3
31 3—>4 352 353 352
4 2 4 -3 4 1 4 1 4 54

The importance of this can be seen when considering the scattering matrix, impedance
matrix, or admittance matrix of these networks.



For example, consider again this symmetric circuit:

@ VAYAY, °
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% 2000 | 2000 % ‘
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This four-port network has a single plane of reflection symmetry (i.e., D; symmetry), and
thus is congruent under the permutation:

12
2—>1
354
43

So, since (for example) 1 — 2, we find that for this circuit:

511 :522 Z11 :Zzz ){1 :)éz
must be true!



) ) Si3 = S Zis =24 Ys =Y
Or, since 1 > 2 and 3 —> 4 we find:

531 = 542 Z31 = Z42 %1 = ){12

Continuing for all elements of the permutation, we find that for this symmetric circuit,
the scattering matrix must have this form:

Si Su S5 S
s |5 S S S
‘52’31 541 ‘533 543
_541 ‘52’11 543 ‘5233_

and the impedance and admittance matrices would likewise have this same form.

Note there are just 8 independent elements in this matrix. If we also consider
reciprocity (a constraint independent of symmetry) we find that 5, =5, and 5, =5, , and

the matrix reduces further to one with just 6 independent elements:

Sy Sy Sut
S- Sy Sy Sy
Sy S Su3
_541 Si3 533 ]




Or, for circuits with this D; symmetry:
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Q: Interesting. But why do we care?

A: This will greatly simplify the analysis of this symmetric circuit, as we need to
determine only six matrix elements!



For a circuit with D2 symmetry:
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Note here that there are just four independent values!




For a circuit with D4 symmetry:

we find that the admittance (or scattering, or impedance) matrix has the form:
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Note here that there are just three independent values!



One more interesting thing (yet another onel); recall that we earlier found that a
matched, lossless, reciprocal 4-port device must have a scattering matrix with one of two

forms:
0 a Jjp O
| 0 0 jp
5= 8 0 0 ¢«
0 JjB a O
0 a B 0]
a 0 O -p
5= S 0 0 «
0 -8 a 0

The "symmetric” solution

The "anti-symmeftric” solution

Compare these to the matrix forms above. The "symmeftric solution” has the same form
as the scattering matrix of a circuit with D, symmetry!

0 «a
a O
JB 0

L0 JB

JB 0]
0 Jp
0O «a
a 0




Q: Does this mean that a matched, lossless, reciprocal four-port device with the
'symmeftric” scattering matrix must exhibit D, symmetry?

A: That's exactly what it means!

Not only can we determine from the form of the scattering matrix whether a particular
design is possible (e.g., a matched, lossless, reciprocal 3-port device is impossible), we can
also determine the general structure of a possible solutions (e.g. the circuit must have D,
symmetry).

Likewise, the "anti-symmetric"” matched, lossless, reciprocal four-port network must
exhibit D; symmetry!

0 « 0

a 0 0 -p
S 0O 0 «

0 -8 a 0

We'll see just what these symmetric, matched, lossless, reciprocal four-port circuits
actually are later in the course!




