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Circuit Symmetry 
 
One of the most powerful concepts in for evaluating circuits is 
that of symmetry.  Normal humans have a conceptual 
understanding of symmetry, based on an esthetic perception 
of structures and figures. 
 

On the other hand, mathematicians (as they are wont to do) have 
defined symmetry in a very precise and unambiguous way. Using a branch 
of mathematics called Group Theory, first developed by the young 
genius Évariste Galois (1811-1832), symmetry is defined by a set of 
operations (a group) that leaves an object unchanged.   
 
Initially, the symmetric “objects” under consideration by Galois were 
polynomial functions, but group theory can likewise be applied to 
evaluate the symmetry of structures. 

 
For example, consider an ordinary equilateral triangle; we find that it 
is a highly symmetric object! 
 
 

 

 
Évariste Galois 
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Q:  Obviously this is true. We don’t need a mathematician to tell us that! 
 
A:  Yes, but how symmetric is it?  How does the symmetry of an equilateral triangle 
compare to that of an isosceles triangle, a rectangle, or a square? 
 
 
 
 
 
To determine its level of symmetry, let’s first label each corner as corner 1, corner 2, and 
corner 3. 
 
 
 
 
 
First, we note that the triangle exhibits a plane of reflection symmetry: 
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Thus, if we “reflect” the triangle across this plane we get: 
 
 
 
 
 
 
 
 
 
Note that although corners 1 and 3 have changed places, the triangle itself remains 
unchanged—that is, it has the same shape, same size, and same orientation after 
reflecting across the symmetric plane! 
 
Mathematicians say that these two triangles are congruent. 
 
Note that we can write this reflection operation as a permutation (an exchange of 
position) of the corners, defined as: 
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Q:  But wait! Isn’t there is more than just one plane of reflection symmetry? 
 
A:  Definitely! There are two more: 
 
 

1 2
2 1
3 3
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In addition, an equilateral triangle exhibits rotation symmetry!  Rotating the triangle 120  
clockwise also results in a congruent triangle: 
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Likewise, rotating the triangle 120  counter-clockwise results in a congruent triangle: 
 
 

1 3
2 1
3 2

→

→

→

 

 
Additionally, there is one more operation that will result in a congruent triangle—do 
nothing! 
 
 

1 1
2 2
3 3

→

→

→

 

 
This seemingly trivial operation is known as the identity operation, and is an element of 
every symmetry group. 
 
These 6 operations form the dihedral symmetry group D3 which has order six (i.e., it 
consists of six operations).  An object that remains congruent when operated on by any 
and all of these six operations is said to have D3 symmetry. 
 

An equilateral triangle has D3 symmetry! 
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By applying a similar analysis to a isosceles triangle, rectangle, and square, we find that: 
 
 

An isosceles trapezoid has D1 symmetry, a dihedral group of order 2.  
 
 
A rectangle has D2 symmetry, a dihedral group of order 4. 
 
 
A square has D4 symmetry, a dihedral group of order 8. 
 

 
Thus, a square is the most symmetric object of the four we have discussed; the isosceles 
trapezoid is the least. 
 
Q:  Well that’s all just fascinating—but just what the heck does this have to do with 
microwave circuits!?! 
 
A:  Plenty!  Useful circuits often display high levels of symmetry. 
 
 
 
 
 

D1 

D2 

D4 



 

3/4/2009 Circuit Symmetry present 7/16 

Jim Stiles The Univ. of Kansas Dept. of EECS 

For example, consider these D1 symmetric multi-port circuits: 
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3 4
4 3
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Or this circuit with D2 symmetry: 
 
 
 
     
 
 
 
 
 
 
which is congruent under these permutations: 
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Or this circuit with D4 symmetry: 
 
 
     
 
 
 
 
 
 
 
which is congruent under these permutations: 
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The importance of this can be seen when considering the scattering matrix, impedance 
matrix, or admittance matrix of these networks. 
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For example, consider again this symmetric circuit:  
 

 
 
 
 
 
 
 
 
 
This four-port network has a single plane of reflection symmetry (i.e., D1 symmetry), and 
thus is congruent under the permutation: 
 

1 2
2 1
3 4
4 3

→

→

→

→

 

 
So, since (for example) 1 2→ , we find that for this circuit: 
 

11 22 11 22 11 22S S Z Z Y Y= = =  
must be true! 
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Or, since 1 2→  and 3 4→  we find: 
 

 
Continuing for all elements of the permutation, we find that for this symmetric circuit, 
the scattering matrix must have this form: 
 

11 21 13 14

21 11 1314

31 3341 43

31 3341 43

S S S S
S S S S
S S S S
S S S S

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

S  

 
and the impedance and admittance matrices would likewise have this same form. 
 
Note there are just 8 independent elements in this matrix.  If we also consider 
reciprocity (a constraint independent of symmetry) we find that 31 13S S=  and 41 14S S= , and 
the matrix reduces further to one with just 6 independent elements: 
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41 33
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⎡ ⎤
⎢ ⎥
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⎢ ⎥
⎢ ⎥
⎣ ⎦
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13 13 1324 24 24

31 31 3142 42 42

S S Z Z Y Y

S S Z Z Y Y

= = =

= = =
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Or, for circuits with this D1 symmetry: 
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Q:  Interesting. But why do we care?  
 
A: This will greatly simplify the analysis of this symmetric circuit, as we need to 
determine only six matrix elements! 
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For a circuit with D2 symmetry: 
 
 
 
 
 
 
 
 
 
 
 
we find that the impedance (or scattering, or admittance) matrix has the form: 
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⎢ ⎥
⎣ ⎦
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Note here that there are just four independent values! 
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For a circuit with D4 symmetry: 
 
 
 
 
 
 
 
 
 
 
 
we find that the admittance (or scattering, or impedance) matrix has the form: 
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21 21
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⎡ ⎤
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⎢ ⎥
⎣ ⎦
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Note here that there are just three independent values! 
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One more interesting thing (yet another one!); recall that we earlier found that a 
matched, lossless, reciprocal 4-port device must have a scattering matrix with one of two 
forms: 
   

0 0
0 0
0 0

0 0

j
j

j
j

α β
α β
β α

β α

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

S       The “symmetric” solution 

 
 

0 0
0 0
0 0

0 0

α β
α β
β α

β α

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦

S   The “anti-symmetric” solution 

 
Compare these to the matrix forms above.  The “symmetric solution” has the same form 
as the scattering matrix of a circuit with D2 symmetry! 
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⎣ ⎦
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Q: Does this mean that a matched, lossless, reciprocal four-port device with the 
“symmetric” scattering matrix must exhibit D2 symmetry?  
 
A:  That’s exactly what it means!   
 
Not only can we determine from the form of the scattering matrix whether a particular 
design is possible (e.g., a matched, lossless, reciprocal 3-port device is impossible), we can 
also determine the general structure of a possible solutions (e.g. the circuit must have D2 
symmetry). 
 
Likewise, the “anti-symmetric” matched, lossless, reciprocal four-port network must 
exhibit D1 symmetry! 

0
0

0

0

00
0

0
α

α
α

β
β

β α
β

−
⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢
⎢ ⎥
⎣ ⎦−

⎥
S  

 
We’ll see just what these symmetric, matched, lossless, reciprocal four-port circuits 
actually are later in the course!  
 

 


