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Circuit Symmetry 
 
One of the most powerful 
concepts in for evaluating circuits 
is that of symmetry.  Normal 
humans have a conceptual 
understanding of symmetry, based 
on an esthetic perception of 
structures and figures. 
 

On the other hand, mathematicians (as they 
are wont to do) have defined symmetry in a 
very precise and unambiguous way. Using a 
branch of mathematics called Group 
Theory, first developed by the young genius 
Évariste Galois (1811-1832), symmetry is 
defined by a set of operations (a group) 
that leaves an object unchanged.   
 

Initially, the symmetric “objects” under consideration by 
Galois were polynomial functions, but group theory can 
likewise be applied to evaluate the symmetry of structures. 
 
For example, consider an ordinary 
equilateral triangle; we find that it is a 
highly symmetric object! 
 
 

 

 
Évariste Galois 
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Q:  Obviously this is true. We don’t need a mathematician to 
tell us that! 
 
A:  Yes, but how symmetric is it?  How does the symmetry of 
an equilateral triangle compare to that of an isosceles 
triangle, a rectangle, or a square? 
 
 
 
 
 
 
To determine its level of symmetry, let’s first label each 
corner as corner 1, corner 2, and corner 3. 
 
 
 
 
 
 
 
First, we note that the triangle exhibits a plane of reflection 
symmetry: 
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Thus, if we “reflect” the triangle across this plane we get: 
 
 
 
 
 
 
 
 
Note that although corners 1 and 3 have changed places, the 
triangle itself remains unchanged—that is, it has the same 
shape, same size, and same orientation after reflecting across 
the symmetric plane! 
 
Mathematicians say that these two triangles are congruent. 
 
Note that we can write this reflection operation as a 
permutation (an exchange of position) of the corners, defined 
as: 

1 3
2 2
3 1

→

→

→

 

 
Q:  But wait! Isn’t there is more than just one plane of 
reflection symmetry? 
 
A:  Definitely! There are two more: 
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1 2
2 1
3 3

→

→

→

 

 
 
 
 

 
1 1
2 3
3 2

→

→

→

 

 
 

In addition, an equilateral triangle exhibits rotation 
symmetry! 
 
Rotating the triangle 120  clockwise also results in a 
congruent triangle: 

 
       

       
1 2
2 3
3 1

→

→

→

 

 
 
 
Likewise, rotating the triangle 120  counter-clockwise results 
in a congruent triangle: 
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1 3
2 1
3 2

→

→

→

 

 
 

 
Additionally, there is one more operation that will result in a 
congruent triangle—do nothing! 
 
 

1 1
2 2
3 3

→

→

→

 

 
 
This seemingly trivial operation is known as the identity 
operation, and is an element of every symmetry group. 
 
These 6 operations form the dihedral symmetry group D3 
which has order six (i.e., it consists of six operations).  An 
object that remains congruent when operated on by any and 
all of these six operations is said to have D3 symmetry. 
 
 An equilateral triangle has D3 symmetry! 
 
By applying a similar analysis to a isosceles triangle, rectangle, 
and square, we find that: 
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An isosceles trapezoid has D1 symmetry, a 
dihedral group of order 2.  
 
 
A rectangle has D2 symmetry, a dihedral group 
of order 4. 
 
 
A square has D4 symmetry, a dihedral group of 
order 8. 
 

Thus, a square is the most symmetric object of the four we 
have discussed; the isosceles trapezoid is the least. 
 
Q:  Well that’s all just fascinating—but just what the heck 
does this have to do with microwave circuits!?! 
 
A:  Plenty!  Useful circuits often display high levels of 
symmetry. 
 
For example consider these D1 symmetric multi-port circuits: 
 
 

 

1 2
2 1
3 4
4 3

→

→

→

→
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1 3
2 4
3 1
4 2

→

→

→

→

 

 
 
 
 
Or this circuit with D2 symmetry: 
 
 
 
     
 
 
 
 
 
 
which is congruent under these permutations: 
 

1 3
2 4
3 1
4 2

→

→

→

→

              

1 2
2 1
3 4
4 3

→

→

→

→

             

1 4
2 3
3 2
4 1

→

→

→

→

 

 
 
 
 

50Ω  

50Ω  

200Ω  100Ω  
Port 1 Port 2 

Port 4 Port 3 

50Ω  

50Ω  

200Ω  200Ω  
Port 1 Port 2 

Port 4 Port 3 



 

3/4/2009 Circuit Symmetry 8/14 

Jim Stiles The Univ. of Kansas Dept. of EECS 

Or this circuit with D4 symmetry: 
 
 
     
 
 
 
 
 
 
which is congruent under these permutations: 
 

1 3
2 4
3 1
4 2

→

→

→

→

           

1 2
2 1
3 4
4 3

→

→

→

→

           

1 4
2 3
3 2
4 1

→

→

→

→

           

1 4
2 2
3 3
4 1

→

→

→

→

          

1 1
2 3
3 2
4 4

→

→

→

→

 

 
The importance of this can be seen when considering the 
scattering matrix, impedance matrix, or admittance matrix of 
these networks. 
 
For example, consider again this symmetric circuit:  
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This four-port network has a single plane of reflection 
symmetry (i.e., D1 symmetry), and thus is congruent under the 
permutation: 

1 2
2 1
3 4
4 3

→

→

→

→

 

 
So, since (for example) 1 2→ , we find that for this circuit: 
 

11 22 11 22 11 22S S Z Z Y Y= = =  
 
must be true! 
 
Or, since 1 2→  and 3 4→  we find: 
 

13 13 1324 24 24

31 31 3142 42 42

S S Z Z Y Y

S S Z Z Y Y

= = =

= = =

 

 
Continuing for all elements of the permutation, we find that 
for this symmetric circuit, the scattering matrix must have 
this form: 

11 21 13 14

21 11 1314

31 3341 43

31 3341 43

S S S S
S S S S
S S S S
S S S S

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

S  
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and the impedance and admittance matrices would likewise 
have this same form. 
 
Note there are just 8 independent elements in this matrix.  If 
we also consider reciprocity (a constraint independent of 
symmetry) we find that 31 13S S=  and 41 14S S= , and the matrix 
reduces further to one with just 6 independent elements: 
 

41

41

41 33

31

31

31

31

43

434

21

3

1

11

1 3

112

S
S

S S

S
S

S
S

S
S

S

S
S

SS S
⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

S  

 
Or, for circuits with this D1 symmetry: 

 
 

1 3
2 4
3 1
4 2

→

→

→

→

 

 
 

41

41

41

11

11

21

21

2

31

31

31

31 1

21 2

2

4 2

2

1

S
S

S
S

S
S

S
S

S

S

S

S
S

S

S S

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

S  

 
Q:  Interesting. But why do we care?  
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A: This will greatly simplify the analysis of this symmetric 
circuit, as we need to determine only six matrix elements! 
 
For a circuit with D2 symmetry: 
 
 
 
 
 
 
 
 
 
 
 
we find that the impedance (or scattering, or admittance) 
matrix has the form: 
 

41

41

41

11

11

11

21

21

21

41

31

31

3

21 1

1

131

Z
Z

Z
Z

Z Z
Z

Z
Z Z

ZZ
ZZ

Z

Z

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

Z  

 
Note here that there are just four independent values! 
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For a circuit with D4 symmetry: 
 
 
 
 
 
 
 
 
 
 
 
we find that the admittance (or scattering, or impedance) 
matrix has the form: 
 

41

41

41

11

11

11

21 21

21 21

21 21

21 24 1111

Y Y
Y Y
Y Y

Y Y

Y
Y

Y
Y

Y
Y

Y

Y

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

Y  

 
Note here that there are just three independent values! 
 
One more interesting thing (yet another one!); recall that we 
earlier found that a matched, lossless, reciprocal 4-port 
device must have a scattering matrix with one of two forms: 
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0 0
0 0
0 0

0 0

j
j

j
j

α β
α β
β α

β α

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

S       The “symmetric” solution 

 
 

0 0
0 0
0 0

0 0

α β
α β
β α

β α

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦

S   The “anti-symmetric” solution 

 
 
Compare these to the matrix forms above.  The “symmetric 
solution” has the same form as the scattering matrix of a 
circuit with D2 symmetry! 
 

0
0

0
0

0
0

0
0

j
j

j
j

β
β

α
α

α
α

β
β

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

S  

 
Q: Does this mean that a matched, lossless, reciprocal four-
port device with the “symmetric” scattering matrix must 
exhibit D2 symmetry?  
 
A:  That’s exactly what it means!   
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Not only can we determine from the form of the scattering 
matrix whether a particular design is possible (e.g., a matched, 
lossless, reciprocal 3-port device is impossible), we can also 
determine the general structure of a possible solutions (e.g. 
the circuit must have D2 symmetry). 
 
Likewise, the “anti-symmetric” matched, lossless, reciprocal 
four-port network must exhibit D1 symmetry! 
 

0
0

0

0

00
0

0
α

α
α

β
β

β α
β

−
⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢
⎢ ⎥
⎣ ⎦−

⎥
S  

 
We’ll see just what these symmetric, matched, lossless, 
reciprocal four-port circuits actually are later in the course!  


