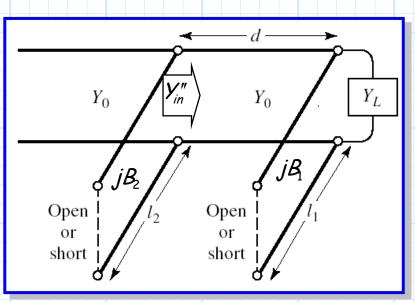
Double Stub Tuning

Another way to build a matching network is with a double stub

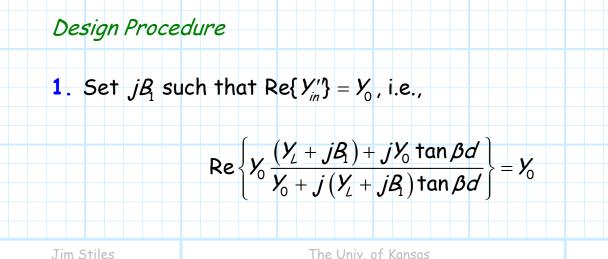
tuner:



In this design, d is a **fixed** length (typically, $d = \lambda/8$), whereas lengths ℓ_1 and ℓ_2 are **design parameters**.

Q: Why are l_1 and l_2 design parameters, but **not** length d?

A: Because the lengths ℓ_1 and ℓ_2 can be easily altered—the matching network is physically tunable!



Dept. of EECS

=1

$$\operatorname{Re}\left\{\frac{\mathcal{G}_{L}+j\left(\mathcal{B}_{L}+\mathcal{B}_{1}+\mathcal{Y}_{0}\tan\beta d\right)}{\mathcal{Y}_{0}-(\mathcal{B}_{L}+\mathcal{B}_{1})\tan\beta d+j\mathcal{G}_{L}\tan\beta d}\right\}$$

where $Y_L = G_L + jB_L$.

Problem: There **may** be **no** solution jB_1 that satisfies this equation! There exists **some** load impedances $Z_L(Y_L)$ that **cannot** be matched with a double stub tuner.

These loads are said to lie in the scary *forbidden region* (eq. 5.21). We will find that these load impedances have **real** (resistive) parts that are **large** (e.g., $R_L \gg Z_0$).

2. Set jB_2 such that:

$$\operatorname{Im}\{Y_{in}''+jB_2\}=0$$

or equivalently:

$$B_2 = -\operatorname{Im}\{Y''_{in}\}$$

The resulting input admittance is thus:

$$Y_{in} = Y_{in}'' + jB_2 = Y_0$$
 (real)

The design equations are provided on pp. 240, **OR** we can use a Smith Chart (see **example 5.4**) to find the solutions!