<u>Example: Determining</u> Transmission Line Length

A load **terminating** at transmission line has a normalized impedance $z'_{\ell} = 2.0 + j2.0$. What should the **length** ℓ of transmission line be in order for its input impedance to be:

a) purely real (i.e., $x_{in} = 0$)?

b) have a real (resistive) part equal to one (i.e., $r_{in} = 1.0$)?

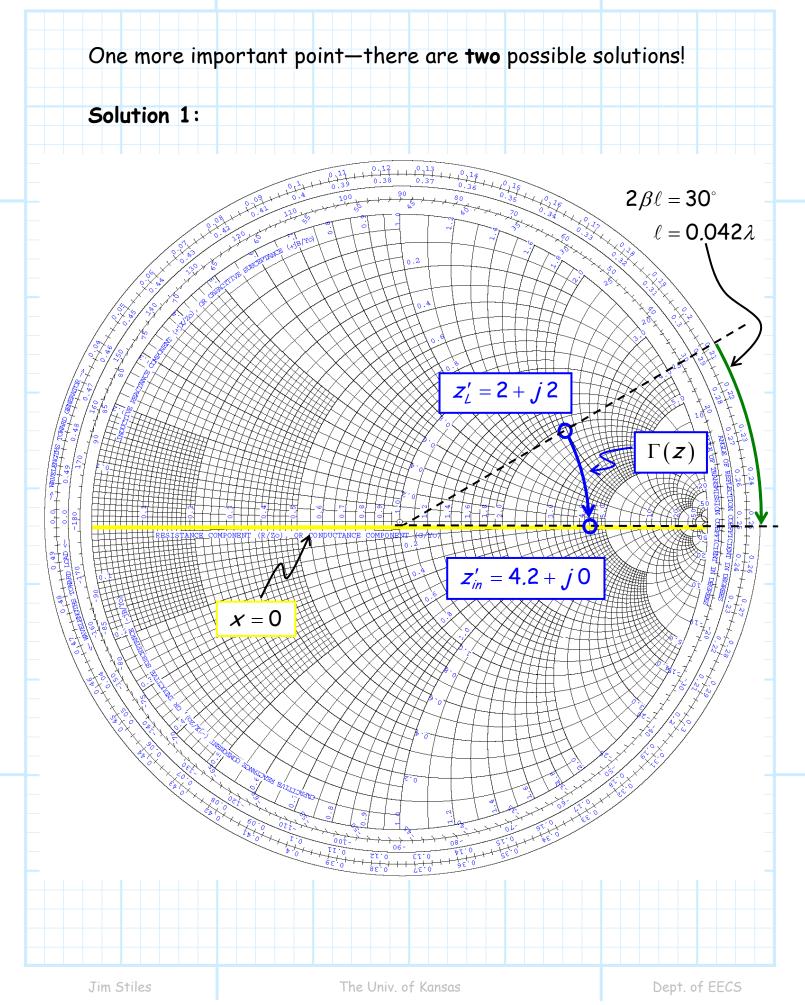
<u>Solution:</u>

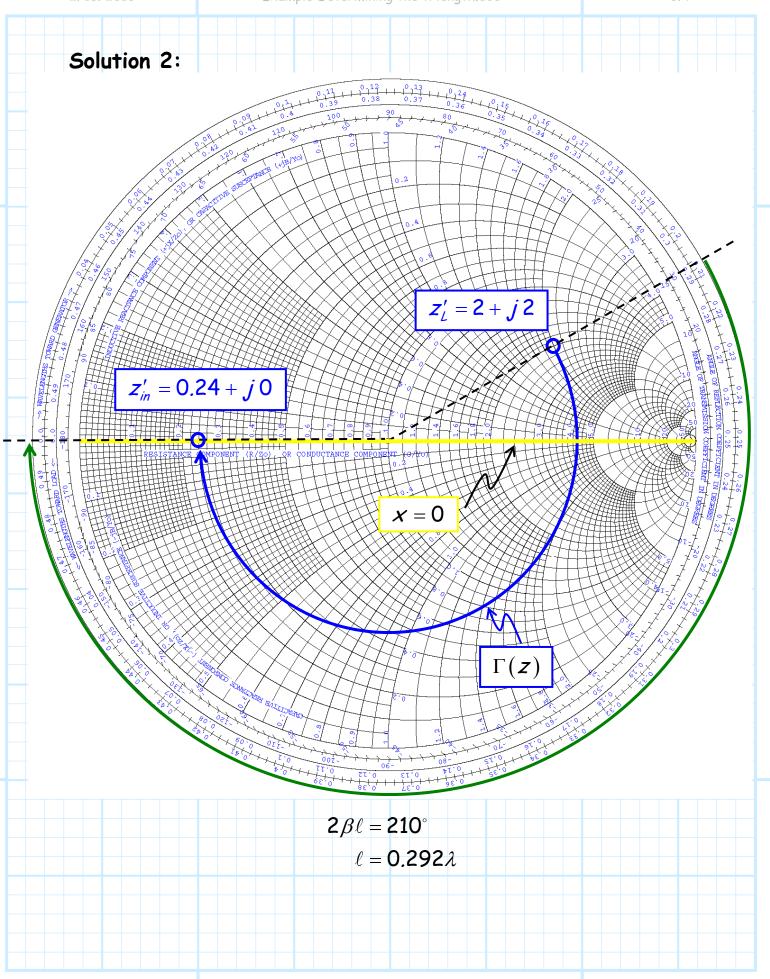
a) Find $z'_{L} = 2.0 + j2.0$ on your Smith Chart, and then rotate **clockwise** until you "bump into" the contour x = 0 (recall this is contour lies on the Γ_{r} axis!).

When you reach the x = 0 contour—**stop!** Lift your pencil and note that the impedance value of this location is **purely real** (after all, x = 0!).

Now, measure the **rotation angle** that was required to move clockwise from $z'_{L} = 2.0 + j2.0$ to an impedance on the x = 0 contour—this **angle** is equal to $2\beta\ell$!

You can now solve for ℓ , or alternatively use the electrical length scale surrounding the Smith Chart.





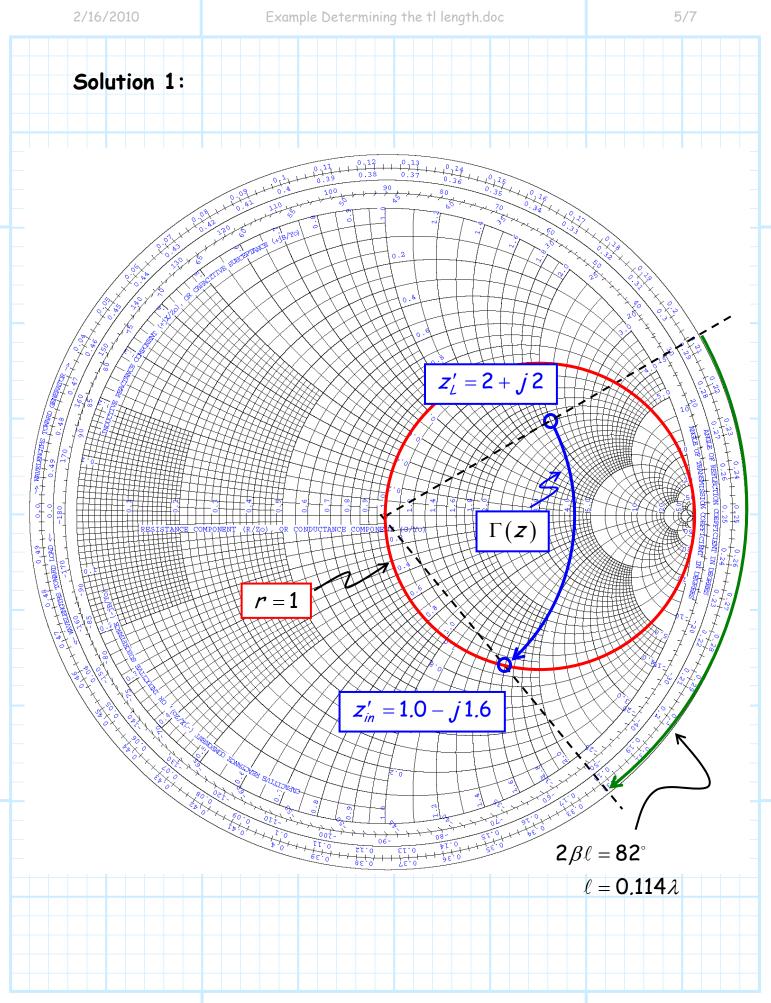
b) Find $z'_{L} = 2.0 + j2.0$ on your Smith Chart, and then rotate **clockwise** until you "bump into" the **circle** r = 1 (recall this circle intersects the **center** point or the Smith Chart!).

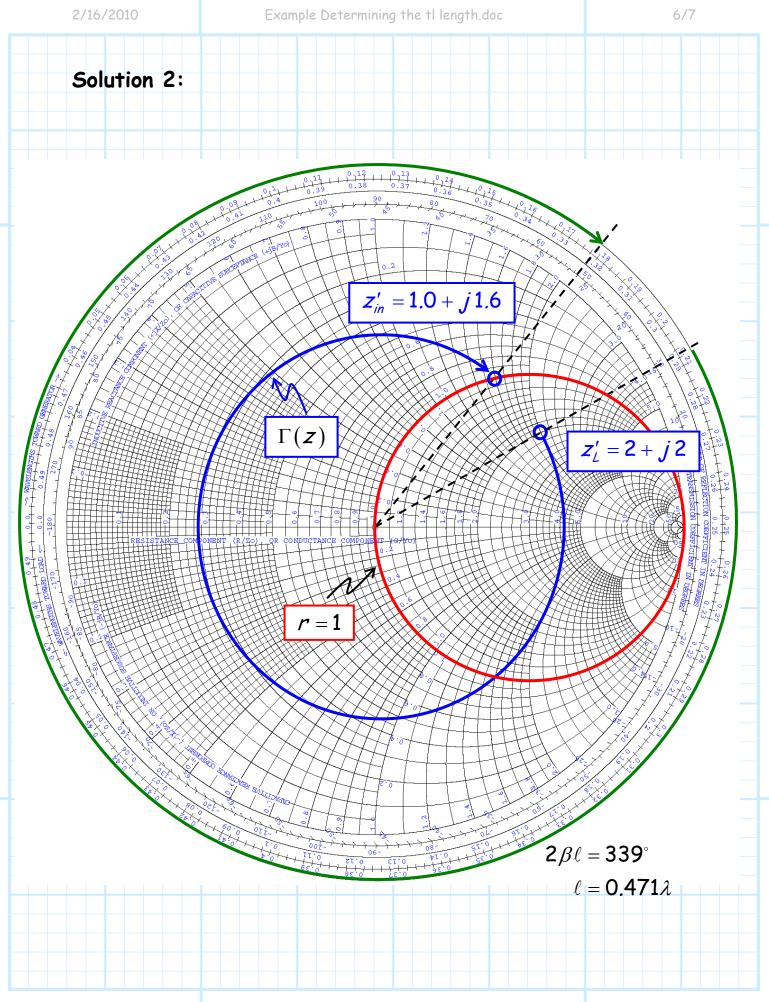
When you reach the r = 1 circle—**stop**! Lift your pencil and note that the impedance value of this location has a real value equal to **one** (after all, r = 1!).

Now, measure the **rotation angle** that was required to move clockwise from $z'_{\ell} = 2.0 + j2.0$ to an impedance on the r = 1 circle—this **angle** is equal to $2\beta\ell$!

You can now solve for ℓ , or alternatively use the electrical length scale surrounding the Smith Chart.

Again, we find that there are **two** solutions!





Q: Hey! For part b), the solutions resulted in $z'_{in} = 1 - j1.6$ and $z'_{in} = 1 + j1.6$ --the **imaginary** parts are equal but **opposite!** Is this just a coincidence?

A: Hardly! Remember, the two impedance solutions must result in the same magnitude for Γ --for this example we find $|\Gamma(z)| = 0.625$.

Thus, for impedances where r = 1 (i.e., z' = 1 + j x):

$$\Gamma = \frac{z'-1}{z'+1} = \frac{(1+jx)-1}{(1+jx)+1} = \frac{jx}{2+jx}$$

and therefore:

$$|\Gamma|^{2} = \frac{|j x|^{2}}{|2 + j x|^{2}} = \frac{x^{2}}{4 + x^{2}}$$

Meaning:

$$x^{2} = \frac{4 |\Gamma|^{2}}{1 - |\Gamma|^{2}}$$

of which there are **two** equal by opposite solutions!

$$\boldsymbol{X} = \pm \frac{2 |\Gamma|}{\sqrt{1 - |\Gamma|^2}}$$

Which for this example gives us our solutions $x = \pm 1.6$.