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Filter Realizations Using 
Lumped Elements 

 
Our first filter circuit will be “realized” with lumped elements. 
 
Lumped elements—we mean inductors L and capacitors C ! 
 
Since each of these elements are (ideally) perfectly reactive, 
the resulting filter will be lossless (ideally). 
 
We will first consider two configurations of a ladder circuit: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.25  (p. 393) 
Ladder circuits for low-pass filter prototypes and their element 
definitions.  (a) Prototype beginning with a shunt element. (b) 
Prototype beginning with a series element. 
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Note that these two structures provide a low-pass filter 
response (evaluate the circuits at 0ω =  and ω = ∞ !). 
 
Moreover, these structures have N  different reactive 
elements (i.e., N degrees of design freedom) and thus can be 
used to realize an N-order power loss ratio. 
 
For example, consider the Butterworth power loss ratio 
function: 
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Recall this is a low-pass function, as 1LRP =  at 0ω = , and LRP = ∞   
at ω = ∞ .   Note also that at cω ω= : 
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Meaning that: 
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In other words, cω  defines the 3dB bandwidth of the low-pass 
filter. 
 
Likewise, we find that this Butterworth function is maximally 
flat at 0ω = :  
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Now, we can determine the function ( )LRP ω  for a lumped element 
ladder circuit of N elements using our knowledge of complex 
circuit theory. 
 
Then, we can equate the resulting polynomial to the maximally 
flat function above.   In this manner, we can determine the 
appropriate values of all inductors L and capacitors C! 
 
An example of this method is given on pages 392 and 393 of 
your book.   In this case, the filter is very simple—just one 
inductor and one capacitor.  However, as the book shows, 
finding the solution requires quite a bit complex algebra! 
 
Fortunately, your book likewise provides  tables of complete 
Butterworth and Chebychev Low-Pass solutions (up to order 10) 
for the ladder circuits of figure 8.25—no complex algebra 
required! 
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Q:  What?! What the heck do these values ng  mean? 
 
A:  We can use the values ng  to find the values of inductors and 
capacitors required for a given cutoff frequency cω  and source 
resistance sR  0( )Z . 
 
Specifically, we use the values of ng  to find ladder circuit 
inductor and capacitor values as: 
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where 1 2n , , ,N=  
 
Likewise, the value 1Ng +  describes the load impedance.  
Specifically, we find that if the last reactive element (i.e., Ng ) 
of the ladder circuit is a shunt capacitor, then: 
 

1L N sR g R+=  
 

Whereas, if the last reactive element (i.e., Ng ) of the ladder 
circuit is a series inductor, then: 
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Note however for the Butterworth solutions (in Table 8.3) we 
find that 1 1Ng + =  always, and therefore: 
 

L sR R=  
 

regardless of the last element. 
 
Moreover, we note (in Table 8.4) that this (i.e., 1 1Ng + = ) is 
likewise true for the Chebychev solutions—provided that N  is 
odd! 
 
Thus, since we typically desire a filter where: 
 

0L sR R Z= =  
 

We can use any order of Butterworth filter, or an odd order of 
Chebychev.   
 
Æ In other words, avoid even order Chebychev filters! 

 
 

 
 
 
 
 
 


