$\xrightarrow{I_{L}}$

z = 0

Incident, Reflected, and Absorbed Power

We have discovered that **two waves propagate** along a transmission line, one in each direction ($V^+(z)$ and $V^-(z)$).

The result is that electromagnetic **energy** flows along the transmission line at a given **rate** (i.e., **power**).

Z =

Q: At what **rate** does **energy** flow along a transmission line, and where does that power **go**?

You of course recall that the **time-averaged** power (a **real** value!) absorbed by a **complex** impedance Z_L is:

$$P_{abs} = \frac{1}{2} \operatorname{Re} \left\{ V_{L} I_{L}^{*} \right\} = \frac{\left| V_{L} \right|^{2}}{2} \operatorname{Re} \left\{ \frac{1}{Z_{L}^{*}} \right\} = \frac{\left| I_{L} \right|^{2}}{2} \operatorname{Re} \left\{ Z_{L} \right\}$$

Of course, the load voltage and current is simply the voltage an current at the end of the transmission line (at z = 0).

Jim Stiles

This happy result

A happy result is that we can then use our transmission line theory to determine this absorbed power:

Incident Power

The significance of this result can be seen by rewriting the expression as:

$$P_{abs} = \frac{\left|V_{0}^{+}\right|^{2}}{2Z_{0}} \left(1 - \left|\Gamma_{L}\right|^{2}\right) = \frac{\left|V_{0}^{+}\right|^{2}}{2Z_{0}} - \frac{\left|V_{0}^{+}\Gamma_{L}\right|^{2}}{2Z_{0}} = \frac{\left|V_{0}^{+}\right|^{2}}{2Z_{0}} - \frac{\left|V_{0}^{-}\right|^{2}}{2Z_{0}}$$

The two terms in above expression have a very definite physical meaning.

The **first** term is the time-averaged **power of the wave** propagating along the transmission line **toward the load**.

We say that this wave is **incident** on the load:

$$P_{inc} = P^+ = \frac{\left|V_0^+\right|^2}{2Z_0}$$

Jim Stiles

Reflected Power

Likewise, the second term of the P_{abs} equation describes the **power of the wave** moving in the other direction (**away from the load**).

We refer to this as the wave **reflected** from the load:

$$P_{ref} = P^{-} = \frac{|V_{0}^{-}|^{2}}{2Z_{0}} = \frac{|\Gamma_{L}|^{2}|V_{0}^{+}|^{2}}{2Z_{0}} = |\Gamma_{L}|^{2}P_{inc}$$

Energy is Conserved

Thus, the power **absorbed** by the load (i.e., the power **delivered to** the load) is simply:

$$P_{abs} = P_{inc} - P_{ref}$$

or, rearranging, we find:

$$P_{inc} = P_{abs} + P_{ref}$$

This equation is simply an expression of the conservation of energy!

It says that power flowing **toward** the load (P_{inc}) is either **absorbed** by the load (P_{abs}) or **reflected** back from the load (P_{ref}).

Now let's consider some special cases, and the power that results.

Pinc

Jim Stiles

ref

 Z_L

Special Case #1: $|\Gamma|^2 = 1$

For this case, we find that the load absorbs no power!

$$P_{abs} = P_{inc} \left(1 - \left| \Gamma_L \right|^2 \right) = P_{inc} \left(1 - 1 \right) = 0$$

Likewise, we find that the reflected power is equal to the incident:

$$P_{ref} = \left| \Gamma_L \right|^2 P_{inc} = (1) P_{inc} = P_{inc}$$

Note these two results are completely **consistent**—by conservation of energy, if one is true the other **must** also be:

$$P_{inc} = P_{abs} + P_{ref} = 0 + P_{ref} = P_{ref}$$

In this case, **no power** is absorbed by the load. **All** of the incident power is **reflected**, so that the reflected power is **equal** to that of the incident.

Special Case #2: $|\Gamma|^2=0$

For this case, we find that there is **no reflected power**!

$$P_{ref} = \left|\Gamma_L\right|^2 P_{inc} = (0)P_{inc} = 0$$

Likewise, we find that the absorbed power is equal to the incident:

$$P_{abs} = P_{inc} \left(1 - \left| \Gamma_L \right|^2 \right) = P_{inc} \left(1 - 0 \right) = P_{inc}$$

Note these two results are completely **consistent**—by conservation of energy, if one is true the other **must** also be:

$$P_{inc} = P_{abs} + P_{ref} = P_{abs} + 0 = P_{abs}$$

In this case, all the incident power is absorbed by the load. None of the incident power is reflected, so that the absorbed power is equal to that of the incident.

Case #3: 0< |Γ|²**<1**

For this case, we find that the **reflected** power is greater than zero, but **less** than the incident power.

$$0 < P_{ref} = \left| \Gamma_L \right|^2 P_{inc} < P_{inc}$$

Likewise, we find that the **absorbed** power is **also** greater than zero, but **less** than the incident power.

$$0 < P_{abs} = P_{inc} \left(1 - \left| \Gamma_L \right|^2 \right) < P_{inc}$$

Note these two results are completely **consistent**—by conservation of energy, if one is true the other **must** also be:

$$0 < P_{ref} = P_{inc} - P_{abs} < P_{inc}$$
 and $0 < P_{abs} = P_{inc} - P_{ref} < P_{inc}$

In this case, the incident power is **divided**. Some of the incident power is absorbed by the load, while the **remainder** is reflected from the load.

Case #4: |Γ|²>1

For this case, we find that the **reflected** power is **greater** than the **incident** power.

$$0 < P_{ref} = \left| \Gamma_L \right|^2 P_{inc} < P_{inc}$$

Q: Yikes! What's up with that?

This result does **not** seem at all consistent with your conservation of energy argument.

How can the reflected power be larger than the incident?

A: Quite insightful!

It is indeed a result quite askew with our conservation of energy analysis.

To see why, let's determine the absorbed power for this case.

$$P_{abs} = P_{inc} \left(1 - \left| \Gamma_L \right|^2 \right) < 0$$

The power absorbed by the load is **negative**!

Case #4 - the load cannot be passive

This result actually has a physical interpretation.

A negative absorbed power indicates that the load is not absorbing power at all it is instead **producing** power!

This makes sense if you think about it.

The power flowing **away** from the load (the reflected power) can be larger than the power flowing **toward** the load (the incident power) **only** if the load itself is **creating** this extra power.

The load in this case would not be a power **sink**, it would be a power **source**.

Q: But how could a **passive** load be a power source?

A: It can't.

A **passive** device cannot produce power.

Passive loads Thus, we have come to an important conclusion! The reflection coefficient of any and all passive loads must have a magnitude that is less than one. $|\Gamma_{L}| \leq 1$ for all passive loads **Q**: Can $|\Gamma_{L}|$ every be **greater** than one? A: Sure, if the "load" is an active device. In other words, the load must have some external power source connected to it. **Q:** What about the case where $|\Gamma_L| < 0$, shouldn't we examine that situation as well? A: That would be just plain silly; do you see why?