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Mapping Z to Γ 
 
Recall that line impedance and reflection coefficient are equivalent—either one can be 
expressed in terms of the other: 
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Note this relationship also depends on the characteristic impedance Z0 of the 
transmission line.  To make this relationship more direct, we first define a normalized 
impedance value z ′  (an impedance coefficient!): 
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Using this definition, we find: 
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Normalized Impedance 

 
Thus, we can express ( )zΓ  explicitly in terms of normalized impedance z ′--and vice 
versa! 
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The equations above describe a mapping between coefficients z ′  and Γ . This means that 
each and every normalized impedance value likewise corresponds to one specific point on 
the complex Γ plane! 
 
For example, say we wish to mark or somehow 
indicate the values of normalized impedance z’  
that correspond to the various points on the 
complex Γ plane. 
 

Some values we already know specifically  
 
 
 
 

case Z z ′  Γ 

1 ∞  ∞  1 

2 0 0 -1 

3 0Z  1 0 

4 0j Z  j  j  

5 0j Z−  j−  j−  
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( )1

z ′ = ∞

Γ=
 

Mapping points on both the Γ and Z planes 

 
 
 

Therefore, we find that these five normalized 
impedances map onto five specific points on the 

complex Γ plane  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Or, the five complex Γ  map onto five points on the normalized impedance plane. 
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Mapping contours on both the Γ and Z planes 

 
Now, the preceding provided examples of the mapping of points between the complex 
(normalized) impedance plane, and the complex Γ  plane.  We can likewise map whole 
contours (i.e., sets of points) between these two complex planes. We shall first look at 
two familiar cases. 
 
 

  Z R=  
 
In other words, the case where impedance is purely real, with no reactive component (i.e., 

0X = ); meaning that normalized impedance is: 
 

( )0 0z r j i .e., x′ = + =  
where we recall that 0r R Z= . 
 
Remember, this real-valued impedance results in a real-valued reflection coefficient: 
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Thus, we can determine a mapping between two contours—one contour ( 0x = ) on the 
normalized impedance plane, the other ( 0iΓ = ) on the complex Γ plane: 
 

0 0ix = ⇔ Γ =  
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  Z jX=  

 
 
In other words, the case where impedance is purely imaginary, with no resistive 
component (i.e., 0R = ). 
 
Meaning that normalized impedance is: 
 

( )0 0z jx i .e., r′ = + =  
 
where we recall that 0x X Z= . 
 
Remember, this imaginary impedance results in a reflection coefficient with unity 
magnitude: 
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Thus, we can determine a mapping between two contours—one contour ( 0r = ) on the 
normalized impedance plane, the other ( 1Γ = ) on the complex Γ plane: 
 

0 1r = ⇔ Γ =  
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What about r=0.5, or x=-1.5?? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A:  Actually, not only are mappings of more general impedance contours (such as 0 5r .=  
and 1 5x .= − ) onto the complex Γ  plane possible, these mappings have already been 
achieved—thanks to Dr. Smith and his famous chart! 
 
 
 

 

Q:  These two “mappings” may very well be 
fascinating in an academic sense, but they are 
not particularly relevant, since actual values of 
impedance generally have both a real and 
imaginary component.   
 
Sure, mappings of more general impedance 
contours (e.g., 0 5r .=  or 1 5x .= − ) onto the 
complex Γ  would be useful—but it seems clear 
that those mappings are impossible to achieve!?!  
 


