Mapping Z to T

Recall that line impedance and reflection coefficient are equivalent—either one can be
expressed in terms of the other:

r(z)= and z(z)zzo[tiggj

Note this relationship also depends on the characteristic impedance Z; of the
transmission line. To make this relationship more direct, we first define a normalized
impedance value z' (an impedance coefficient!):

Z(z) _ R(z)+j X(z)

)= Z,

=r(z)+Jjx(z)

Using this definition, we find:




Normalized Impedance

Thus, we can express I'(z) explicitly in ferms of normalized impedance z'--and vice
versal!

The equations above describe a mapping between coefficients z’ and I'. This means that
each and every normalized impedance value likewise corresponds to one specific point on

the complex T plane!
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Mapping points on both the I" and Z planes
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Or, the five complex ' map onto five point§on the nor'malized< impedance plane. >



Mapping contours on both the T" and Z planes

Now, the preceding provided examples of the mapping of points between the complex
(normalized) impedance plane, and the complex I' plane. We can likewise map whole
contours (i.e., sets of points) between these two complex planes. We shall first look at

two familiar cases.

Z =R

In other words, the case where impedance is purely real, with no reactive component (i.e.,

X =0); meaning that normalized impedance is:

z'=r+ /0 (/e.,x=0)

where we recall that r=R/Z,.

Remember, this real-valued impedance results in a real-valued reflection coefficient:
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Thus, we can determine a mapping between two contours—one contour (x =0) on the
normalized impedance plane, the other (I, =0) on the complex " plane:
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Z = jX

In other words, the case where impedance is purely imaginary, with no resistive
component (i.e., R =0).

Meaning that normalized impedance is:

where we recall that x = X/Z, .

Remember, this imaginary impedance results in a reflection coefficient with unity

magnitude:



Thus, we can determine a mapping between two contours—one contour (- =0) on the
normalized impedance plane, the other (|| =1) on the complex T" plane:
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What about r=0.5, or x=-1.5??

Q: These two "mappings” may very well be
fascinating in an academic sense, but they are
not particularly relevant, since actual values of
impedance generally have both a real and
/maginary component.

Sure, mappings of more general impedance
contours (e.g., r =0.5 or x =-15) onto the
complex T would be useful—but it seems clear

that those mappings are impossible to achie VD

A: Actuadlly, not only are mappings of more general impedance contours (such as r=0.5
and x =-15) onto the complex I" plane possible, these mappings have already been
achieved—thanks to Dr. Smith and his famous chart!



