<u>Mapping Z to Γ </u>

Recall that line impedance and reflection coefficient are **equivalent**—either one can be expressed in terms of the other:

$$\Gamma(z) = \frac{Z(z) - Z_0}{Z(z) + Z_0} \quad \text{and} \quad Z(z) = Z_0 \left(\frac{1 + \Gamma(z)}{1 - \Gamma(z)}\right)$$

Note this relationship also depends on the characteristic impedance Z_0 of the transmission line. To make this relationship **more direct**, we first define a **normalized** impedance value z' (an impedance coefficient!):

$$z'(z) = \frac{Z(z)}{Z_0} = \frac{R(z)}{Z_0} + j \frac{X(z)}{Z_0} = r(z) + j x(z)$$

Using this definition, we find:

 $\Gamma(z) = \frac{Z(z) - Z_0}{Z(z) + Z_0}$ $= \frac{Z(z)/Z_0 - 1}{Z(z)/Z_0 + 1}$ $= \frac{Z'(z) - 1}{Z'(z) + 1}$

Thus, we can express $\Gamma(z)$ explicitly in terms of normalized impedance z'--and vice versa!

$$\Gamma(z) = \frac{z'(z) - 1}{z'(z) + 1} \qquad z'(z) = \frac{1 + \Gamma(z)}{1 - \Gamma(z)}$$

The equations above describe a **mapping** between coefficients z' and Γ . This means that each and every normalized impedance value likewise corresponds to one specific point on the complex Γ plane!

For example, say we wish to mark or somehow indicate the values of normalized impedance z' that correspond to the various points on the complex Γ plane.

Some values we already know specifically:

case Z z' Γ 1 ∞ ∞ 1 2 0 0 -1 3 Z_0 1 0 4 jZ_0 j j 5 $-jZ_0$ $-j$ $-j$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	case	Ζ	<i>z</i> ′	Г
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	x	∞	1
4 <i>j Z</i> ₀ <i>j j</i>	2	0	0	-1
	3	Z ₀	1	0
5 $-jZ_0$ $-j$ $-j$	4	jZ ₀	j	j
	5	$-jZ_0$	- <i>j</i>	- <i>j</i>

Now, the preceding provided examples of the mapping of **points** between the complex (normalized) impedance plane, and the complex Γ plane.

We can likewise **map whole contours** (i.e., sets of points) between these two complex planes. We shall first look at two familiar cases.

$$Z = R$$

In other words, the case where impedance is purely real, with **no** reactive component (i.e., X = 0).

Meaning that normalized impedance is:

 $\Gamma_r \doteq \mathbf{Re} \{ \Gamma \} = \frac{r-1}{r+1}$

$$z' = r + j0$$
 ((*i.e.*, $x = 0$)

where we recall that $r = R/Z_0$.

Remember, this real-valued impedance results in a real-valued reflection coefficient:

 $\Gamma = \frac{r-1}{r+1}$

 $\Gamma_i \doteq Im\{\Gamma\} = 0$

$$Z = jX$$

In other words, the case where impedance is **purely imaginary**, with **no** resistive component (i.e., R = 0).

Meaning that normalized impedance is:

$$z' = 0 + jx$$
 ((*i.e.*, $r = 0$)

where we recall that $x = X/Z_0$.

Remember, this **imaginary** impedance results in a reflection coefficient with **unity magnitude**:

Thus, we can determine a mapping between two contours—one contour (r = 0) on the normalized impedance plane, the other ($|\Gamma| = 1$) on the complex Γ plane:

 $|\Gamma| = 1$

$$r = 0 \quad \Leftrightarrow \quad |\Gamma| = 1$$

8/8

<image>

Q: These two "mappings" may very well be fascinating in an academic sense, but they are not particularly relevant, since actual values of impedance generally have both a real and imaginary component.

Sure, mappings of more general impedance contours (e.g., r = 0.5or x = -1.5) onto the complex Γ would be useful—but it seems clear that those mappings are impossible to achieve!?!

A: Actually, not only are mappings of more general impedance contours (such as r = 0.5 and x = -1.5) onto the complex Γ plane **possible**, these mappings have **already** been achieved—thanks to **Dr**. Smith and his famous chart!