Matching Networks

 $Z_{L} = R_{L} + jX_{L}$

Consider again the problem where a **passive load** is attached to an **active source**:

 $Z_{_g}$

The load will **absorb power**—power that is **delivered** to it by the **source**.

Va

$$P_{L} = \frac{1}{2} \left| V_{g} \right|^{2} \frac{R_{L}}{\left| Z_{g} + Z_{L} \right|^{2}}$$

Recall that the power delivered to the load will be **maximized** (for a given V_g and Z_g) if the load impedance is equal to the **complex conjugate** of the source impedance ($Z_L = Z_g^*$). We call this maximum power the **available power** P_{av} of the source—it is, after all, the **largest** amount of power that the source can ever deliver! $P_{L}^{max} \doteq P_{avl} = \frac{1}{2} |V_{g}|^{2} \frac{R_{g}}{|Z_{g} + Z_{g}^{*}|^{2}} = \frac{1}{2} |V_{g}|^{2} \frac{R_{g}}{|2R_{g}|^{2}} = \frac{|V_{g}|}{8} \frac{R_{g}}{R_{g}}$

Note the available power of the source is dependent on source parameters only (i.e., V_g and R_g). This makes sense! Do you see why?

* Thus, we can say that to "take full advantage" of all the available power of the source, we must to make the load impedance the complex conjugate of the source impedance.

* Otherwise, the power delivered to the load will be less than power made available by the source! In other "words":

$P_L \leq P_{avl}$

Q: But, you said that the load impedance typically models the input impedance of some useful device. We don't typically get to "select" or adjust this impedance—it is what it is. Must we then simply accept the fact that the delivered power will be less than the available power? A: NO! We can in fact modify our circuit such that all available source power is delivered to the load—without in any way altering the impedance value of that load!

To accomplish this, we must insert a **matching network** between the source and the load:

 $P_{in} = P_{avl}$

Because of this, **all** available source power is delivered to the input of the matching network (i.e., delivered to Z_m):

Q: Wait just one second! The matching network ensures that **all** available power is delivered to the **input** of the matching network, but that does **not** mean (necessarily) that this power will be delivered to the **load** Z_{L} . The power delivered to the load **could** still be **much less** than the available power!

A: True! To ensure that the available power delivered to the input of the matching network is entirely delivered to the load, we must construct our matching network such that it cannot absorb any power—the matching network must be lossless!

We must construct our matching network entirely with reactive elements!

Examples of reactive elements include inductors, capacitors, transformers, as well as lengths of **lossless transmission lines**.

Thus, constructing a proper lossless matching network will lead to the **happy** condition where:

$$P_L = P_{in} = P_{avl}$$

* Note that the design and construction of this lossless network will depend on **both** the value of source impedance Z_{q} and load impedance Z_{l} .

* However, the matching network does not physically alter the values of either of these two quantities—the source and load are left physically unchanged!

Now, let's consider the matching network from a **different perspective**. Instead of defining it in terms of its **input impedance** when attached the **load**, let's describe it in terms of its **output impedance** when attached to the **source**:

This "new" source (i.e., the original source with the matching network attached) can be expressed in terms of its Thevenin's equivalent circuit: $Z_{out} = R_{out} + jX_{out}$ V_{s} Note that in general that $V_s \neq V_q$ and $Z_{out} \neq Z_q$ —the matching network "transforms" both the values of both the impedance and the voltage source. **Q:** Arrrgg! Doesn't that mean that the available power of this "transformed" source will be different from the original? A: Nope. If the matching network is lossless, the available power of this equivalent source is identical to the available power of the original source—the lossless matching network does not alter the available power!

Now, for a **properly** designed, **lossless** matching network, it turns out that (as **you** might have expected!) the output impedance Z_{out} is equal to the **complex conjugate** of the load impedance. I.E.:

$$Z_{out} = Z_L^*$$

The source and load are again matched!

Thus, we can look at the matching network in two equivalent ways:

